174 research outputs found

    The Alternative Splice Variant of Protein Tyrosine Kinase 6 Negatively Regulates Growth and Enhances PTK6-Mediated Inhibition of Ξ²-Catenin

    Get PDF
    Protein tyrosine kinase 6 (PTK6), also called breast tumor kinase (BRK), is expressed in epithelial cells of various tissues including the prostate. Previously it was shown that PTK6 is localized to epithelial cell nuclei in normal prostate, but becomes cytoplasmic in human prostate tumors. PTK6 is also primarily cytoplasmic in the PC3 prostate adenocarcinoma cell line. Sequencing revealed expression of wild type full-length PTK6 transcripts in addition to an alternative transcript lacking exon 2 in PC3 cells. The alternative transcript encodes a 134 amino acid protein, referred to here as ALT-PTK6, which shares the first 77 amino acid residues including the SH3 domain with full length PTK6. RT-PCR was used to show that ALT-PTK6 is coexpressed with full length PTK6 in established human prostate and colon cell lines, as well as in primary cell lines derived from human prostate tissue and tumors. Although interaction between full-length PTK6 and ALT-PTK6 was not detected, ALT-PTK6 associates with the known PTK6 substrates Sam68 and Ξ²-catenin in GST pull-down assays. Coexpression of PTK6 and ALT-PTK6 led to suppression of PTK6 activity and reduced association of PTK6 with tyrosine phosphorylated proteins. While ALT-PTK6 alone did not influence Ξ²-catenin/TCF transcriptional activity in a luciferase reporter assay, it enhanced PTK6-mediated inhibition of Ξ²-catenin/TCF transcription by promoting PTK6 nuclear functions. Ectopic expression of ALT-PTK6 led to reduced expression of the Ξ²-catenin/TCF targets Cyclin D1 and c-Myc in PC3 cells. Expression of tetracycline-inducible ALT-PTK6 blocked the proliferation and colony formation of PC3 cells. Our findings suggest that ALT-PTK6 is able to negatively regulate growth and modulate PTK6 activity, protein-protein associations and/or subcellular localization. Fully understanding functions of ALT-PTK6 and its impact on PTK6 signaling will be critical for development of therapeutic strategies that target PTK6 in cancer

    Parathyroid hormone related peptide and receptor expression in paired primary prostate cancer and bone metastases

    Get PDF
    Parathyroid hormone-related peptide is a regulatory protein implicated in the pathogenesis of bone metastases, particularly in breast carcinoma. Parathyroid hormone-related peptide is widely expressed in primary prostate cancers but there are few reports of its expression in prostatic metastases. The aim of this study was to examine the expression of parathyroid hormone-related peptide and its receptor in matched primary and in bone metastatic tissue from patients with untreated adenocarcinoma of the prostate. Eight-millimetre trephine iliac crest bone biopsies containing metastatic prostate cancer were obtained from 14 patients from whom matched primary tumour tissue was also available. Histological grading was performed by an independent pathologist. The cellular location of mRNA for parathyroid hormone-related peptide and parathyroid hormone-related peptide receptor was identified using in situ hybridization with 35S-labelled probe. Expression of parathyroid hormone-related peptide and its receptor was described as uniform, heterogenous or negative within the tumour cell population. Parathyroid hormone-related peptide expression was positive in 13 out of 14 primary tumours and in all 14 metastases. Receptor expression was evident in all 14 primaries and 12 out of 14 metastases. Co-expression of parathyroid hormone-related peptide and parathyroid hormone-related peptide receptor was common (13 primary tumours, 12 metastases). The co-expression of parathyroid hormone-related peptide and its receptor suggest that autocrine parathyroid hormone-related peptide mediated stimulation may be a mechanism of escape from normal growth regulatory pathways. The high frequency of parathyroid hormone-related peptide expression in metastases is consistent with a role in the pathogenesis of bone metastases

    Serum Vitamin D and Risk of Prostate Cancer in a Case-Control Analysis Nested Within the European Prospective Investigation into Cancer and Nutrition (EPIC)

    Get PDF
    Results from the majority of studies show little association between circulating concentrations of vitamin D and prostate cancer risk, a finding that has not been demonstrated in a wider European population, however. The authors examined whether vitamin D concentrations were associated with prostate cancer risk in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (1994–2000). Serum concentrations of 25-hydroxyvitamin D were measured in 652 prostate cancer cases matched to 752 controls from 7 European countries after a median follow-up time of 4.1 years. Conditional logistic regression models were used to calculate odds ratios for prostate cancer risk in relation to serum 25-hydroxyvitamin D after standardizing for month of blood collection and adjusting for covariates. No significant association was found between 25-hydroxyvitamin D and risk of prostate cancer (highest vs. lowest quintile: odds ratio = 1.28, 95% confidence interval: 0.88, 1.88; P for trend = 0.188). Subgroup analyses showed no significant heterogeneity by cancer stage or grade, age at diagnosis, body mass index, time from blood collection to diagnosis, or calcium intake. In summary, the results of this large nested case-control study provide no evidence in support of a protective effect of circulating concentrations of vitamin D on the risk of prostate cancer

    Expression of androgen receptor and prostate-specific antigen in male breast carcinoma

    Get PDF
    BACKGROUND: The androgen-regulated proteins prostate-specific antigen (PSA) and prostate-specific acid phosphatase (PSAP) are present in high concentrations in normal prostate and prostatic cancer and are considered to be tissue-specific to prostate. These markers are commonly used to diagnose metastatic prostate carcinoma at various sites including the male breast. However, expression of these two proteins in tumors arising in tissues regulated by androgens such as male breast carcinoma has not been thoroughly evaluated. METHODS: In this study we analyzed the expression of PSA, PSAP and androgen receptor (AR) by immunohistochemistry in 26 cases of male breast carcinomas and correlated these with the expression of other prognostic markers. RESULTS: AR, PSA and PSAP expression was observed in 81%, 23% and 0% of carcinomas, respectively. Combined expression of AR and PSA was observed in only four tumors. CONCLUSION: Although the biological significance of PSA expression in male breast carcinomas is not clear, caution should be exercised when it is used as a diagnostic marker of metastatic prostate carcinoma

    Synergistic inhibition of prostate cancer cell lines by a 19- nor hexafluoride vitamin D3 analogue and anti-activator protein 1 retinoid

    Get PDF
    The secosteroid hormones, all- trans- and 9- cis -retinoic acid and vitamin D3, have demonstrated significant capacity to control proliferation in itro of many solid tumour cell lines. Cooperative synergistic effects by these two ligands have been reported, and it is, therefore, possible that greater therapeutic effects could be achieved if these compounds were administered together. The role of retinoid-dependent anti-activator protein 1 (anti-AP-1) effects in controlling cancer cell proliferation appears significant. We have utilized an anti- AP-1 retinoid [2-(4,4-dimethyl-3,4-dihydro-2H-1 benzopyran-6-yl)carbonyl-2-(4-carboxyphenyl)-1,3,-dithiane; SR11238], which does not transactivate through a retinoic acid response element (RARE), and a potent vitamin D3analogue [1Ξ±,25(OH)2-16-ene-23-yne-26,27-F6-19-nor -D3, code name LH] together at low, physiologically safer doses against a panel of prostate cancer cell lines that represent progressively more transformed phenotypes. The LNCaP (least transformed) and PC-3 (intermediately transformed) cell lines were synergistically inhibited in their clonal growth by the combination of LH and SR11238, whereas SR11238 alone was essentially inactive. DU-145 cells (most transformed) were completely insensitive to these analogues. LNCaP cells, but neither PC-3 nor DU-145, underwent apoptosis in the presence of LH and SR11238. Transactivation of the human osteocalcin vitamin D response element (VDRE) by LH was not enhanced in the presence of SR11238, although the expression of E-cadherin in these cells was additively up-regulated in the presence of both compounds. These data suggest the anti-AP-1 retinoid and the vitamin D3 analogue may naturally act synergistically to control cell proliferation, a process that is interrupted during transformation, and that this combination may form the basis for treatment of some androgen-independent prostate cancer. Β© 1999 Cancer Research Campaig

    A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics

    Get PDF
    Cells acquire the invasive and migratory properties necessary for the invasion-metastasis cascade and the establishment of aggressive, metastatic disease by reactivating a latent embryonic programme: epithelial-to-mesenchymal transition (EMT). Herein, we report the development of a new, spontaneous model of EMT which involves four phenotypically distinct clones derived from a primary tumour-derived human prostate cancer cell line (OPCT-1), and its use to explore relationships between EMT and the generation of cancer stem cells (CSCs) in prostate cancer. Expression of epithelial (E-cadherin) and mesenchymal markers (vimentin, fibronectin) revealed that two of the four clones were incapable of spontaneously activating EMT, whereas the others contained large populations of EMT-derived, vimentin-positive cells having spindle-like morphology. One of the two EMT-positive clones exhibited aggressive and stem cell-like characteristics, whereas the other was non-aggressive and showed no stem cell phenotype. One of the two EMT-negative clones exhibited aggressive stem cell-like properties, whereas the other was the least aggressive of all clones. These findings demonstrate the existence of distinct, aggressive CSC-like populations in prostate cancer, but, importantly, that not all cells having a potential for EMT exhibit stem cell-like properties. This unique model can be used to further interrogate the biology of EMT in prostate cancer
    • …
    corecore