3,652 research outputs found

    Multisite Weather Generators Using Bayesian Networks: An Illustrative Case Study for Precipitation Occurrence

    Get PDF
    ABSTRACT: Many existing approaches for multisite weather generation try to capture several statistics of the observed data (e.g. pairwise correlations) in order to generate spatially and temporarily consistent series. In this work we analyse the application of Bayesian networks to this problem, focusing on precipitation occurrence and considering a simple case study to illustrate the potential of this new approach. We use Bayesian networks to approximate the multi-variate (-site) probability distribution of observed gauge data, which is factorized according to the relevant (marginal and conditional) dependencies. This factorization allows the simulation of synthetic samples from the multivariate distribution, thus providing a sound and promising methodology for multisite precipitation series generation.We acknowledge funding provided by the project MULTI‐SDM (CGL2015‐ 66583‐R, MINECO/FEDER)

    On the Josephson Coupling between a disk of one superconductor and a surrounding superconducting film of a different symmetry

    Full text link
    A cylindrical Josephson junction with a spatially dependent Josephson coupling which averages to zero is studied in order to model the physics of a disk of d-wave superconductor embedded in a superconducting film of a different symmetry. It is found that the system always introduces Josepshon vortices in order to gain energy at the junction. The critical current is calculated. It is argued that a recent experiment claimed to provide evidence for s-wave superconductivity in YBa2Cu3O7YBa_2Cu_3O_7 may also be consistent with d-wave superconductivity. Figures available from the author on request.Comment: 10 pages, revtex3.0, TM-11111-940321-1

    Large Area Crop Inventory Experiment (LACIE). Intensive test site assessment report

    Get PDF
    There are no author-identified significant results in this report

    RankPL: A Qualitative Probabilistic Programming Language

    Full text link
    In this paper we introduce RankPL, a modeling language that can be thought of as a qualitative variant of a probabilistic programming language with a semantics based on Spohn's ranking theory. Broadly speaking, RankPL can be used to represent and reason about processes that exhibit uncertainty expressible by distinguishing "normal" from" surprising" events. RankPL allows (iterated) revision of rankings over alternative program states and supports various types of reasoning, including abduction and causal inference. We present the language, its denotational semantics, and a number of practical examples. We also discuss an implementation of RankPL that is available for download

    Causality re-established

    Get PDF
    Causality never gained the status of a "law" or "principle" in physics. Some recent literature even popularized the false idea that causality is a notion that should be banned from theory. Such misconception relies on an alleged universality of reversibility of laws of physics, based either on determinism of classical theory, or on the multiverse interpretation of quantum theory, in both cases motivated by mere interpretational requirements for realism of the theory. Here, I will show that a properly defined unambiguous notion of causality is a theorem of quantum theory, which is also a falsifiable proposition of the theory. Such causality notion appeared in the literature within the framework of operational probabilistic theories. It is a genuinely theoretical notion, corresponding to establish a definite partial order among events, in the same way as we do by using the future causal cone on Minkowski space. The causality notion is logically completely independent of the misidentified concept of "determinism", and, being a consequence of quantum theory, is ubiquitous in physics. In addition, as classical theory can be regarded as a restriction of quantum theory, causality holds also in the classical case, although the determinism of the theory trivializes it. I then conclude arguing that causality naturally establishes an arrow of time. This implies that the scenario of the "Block Universe" and the connected "Past Hypothesis" are incompatible with causality, and thus with quantum theory: they both are doomed to remain mere interpretations and, as such, not falsifiable, similar to the hypothesis of "super-determinism". This article is part of a discussion meeting issue "Foundations of quantum mechanics and their impact on contemporary society".Comment: Presented at the Royal Society of London, on 11/12/ 2017, at the conference "Foundations of quantum mechanics and their impact on contemporary society". To appear on Philosophical Transactions of the Royal Society

    Gaussian Belief with dynamic data and in dynamic network

    Full text link
    In this paper we analyse Belief Propagation over a Gaussian model in a dynamic environment. Recently, this has been proposed as a method to average local measurement values by a distributed protocol ("Consensus Propagation", Moallemi & Van Roy, 2006), where the average is available for read-out at every single node. In the case that the underlying network is constant but the values to be averaged fluctuate ("dynamic data"), convergence and accuracy are determined by the spectral properties of an associated Ruelle-Perron-Frobenius operator. For Gaussian models on Erdos-Renyi graphs, numerical computation points to a spectral gap remaining in the large-size limit, implying exceptionally good scalability. In a model where the underlying network also fluctuates ("dynamic network"), averaging is more effective than in the dynamic data case. Altogether, this implies very good performance of these methods in very large systems, and opens a new field of statistical physics of large (and dynamic) information systems.Comment: 5 pages, 7 figure

    Hierarchical Models for Independence Structures of Networks

    Get PDF
    We introduce a new family of network models, called hierarchical network models, that allow us to represent in an explicit manner the stochastic dependence among the dyads (random ties) of the network. In particular, each member of this family can be associated with a graphical model defining conditional independence clauses among the dyads of the network, called the dependency graph. Every network model with dyadic independence assumption can be generalized to construct members of this new family. Using this new framework, we generalize the Erd\"os-R\'enyi and beta-models to create hierarchical Erd\"os-R\'enyi and beta-models. We describe various methods for parameter estimation as well as simulation studies for models with sparse dependency graphs.Comment: 19 pages, 7 figure

    Statistical physics-based reconstruction in compressed sensing

    Full text link
    Compressed sensing is triggering a major evolution in signal acquisition. It consists in sampling a sparse signal at low rate and later using computational power for its exact reconstruction, so that only the necessary information is measured. Currently used reconstruction techniques are, however, limited to acquisition rates larger than the true density of the signal. We design a new procedure which is able to reconstruct exactly the signal with a number of measurements that approaches the theoretical limit in the limit of large systems. It is based on the joint use of three essential ingredients: a probabilistic approach to signal reconstruction, a message-passing algorithm adapted from belief propagation, and a careful design of the measurement matrix inspired from the theory of crystal nucleation. The performance of this new algorithm is analyzed by statistical physics methods. The obtained improvement is confirmed by numerical studies of several cases.Comment: 20 pages, 8 figures, 3 tables. Related codes and data are available at http://aspics.krzakala.or

    A very fast inference algorithm for finite-dimensional spin glasses: Belief Propagation on the dual lattice

    Full text link
    Starting from a Cluster Variational Method, and inspired by the correctness of the paramagnetic Ansatz (at high temperatures in general, and at any temperature in the 2D Edwards-Anderson model) we propose a novel message passing algorithm --- the Dual algorithm --- to estimate the marginal probabilities of spin glasses on finite dimensional lattices. We show that in a wide range of temperatures our algorithm compares very well with Monte Carlo simulations, with the Double Loop algorithm and with exact calculation of the ground state of 2D systems with bimodal and Gaussian interactions. Moreover it is usually 100 times faster than other provably convergent methods, as the Double Loop algorithm.Comment: 23 pages, 12 figures. v2: improved introductio

    Common Causes and The Direction of Causation

    Get PDF
    Is the common cause principle merely one of a set of useful heuristics for discovering causal relations, or is it rather a piece of heavy duty metaphysics, capable of grounding the direction of causation itself? Since the principle was introduced in Reichenbach’s groundbreaking work The Direction of Time (1956), there have been a series of attempts to pursue the latter program—to take the probabilistic relationships constitutive of the principle of the common cause and use them to ground the direction of causation. These attempts have not all explicitly appealed to the principle as originally formulated; it has also appeared in the guise of independence conditions, counterfactual overdetermination, and, in the causal modelling literature, as the causal markov condition. In this paper, I identify a set of difficulties for grounding the asymmetry of causation on the principle and its descendents. The first difficulty, concerning what I call the vertical placement of causation, consists of a tension between considerations that drive towards the macroscopic scale, and considerations that drive towards the microscopic scale—the worry is that these considerations cannot both be comfortably accommodated. The second difficulty consists of a novel potential counterexample to the principle based on the familiar Einstein Podolsky Rosen (EPR) cases in quantum mechanics
    • …
    corecore