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Abstract Many existing approaches for multisite weather generation try to capture several statistics of
the observed data (such as pairwise correlations) in order to generate spatially and temporarily consistent
series. In this work, we analyze the application of Bayesian networks to this problem, focusing on
precipitation occurrence and considering a simple case study to illustrate the potential of this new approach.
We use Bayesian networks to approximate the multivariate (multisite) probability distribution of observed
gauge data, which is factorized according to the relevant (marginal and conditional) dependencies. This
factorization allows the simulation of synthetic samples from the multivariate distribution, thus providing a
sound and promising methodology for multisite precipitation series generation.

1. Introduction

Stochastic weather generators (WGs) produce synthetic time series of weather data of unlimited length for a
location based on the statistical characteristics of observed weather at that location. There are a number of
reasons why WGs may be required, including the need for long enough time series of daily weather not
directly available from observational records and the sparsity and/or missingness of data at some locations.
WGs are also needed in climate change studies to avoid the limitations of the raw outputs from global and
regional climate models (GCMs and RCMs, respectively), which are typically biased and require some cali-
bration or downscaling for practical applications (Gutiérrez et al., 2019; Manzanas et al., 2019; Maraun et al.,
2010). WGs are one of the available (stochastic) downscaling methodologies suitable for some applications,
like using “delta” changes obtained from climate change projections (Booij, 2005; Schlabing et al., 2014).

The first approach for developing WGs was proposed by Richardson (1981), in which the generation of pre-
cipitation involves itself a two‐step process: first modeling the occurrence of wet/dry days using a Markov
procedure and then modeling the amount of precipitation falling on wet days. The remaining variables
are then computed based on their correlations with each other and with the wet or dry status of each day.
These models are often referred to as Richardson‐type, and produce single‐site series with no spatial
dependence.

Precipitation has always been a key variable of interest in meteorology and, in particular, for WGs (Ailliot
et al., 2015), due to its challenging mixed discrete continuous nature and non‐Gaussianity (Duan et al.,
2007). Thus, most effort in the construction of WGs has been and is still devoted to precipitation, and most
of the currently available WGs still perform separate treatments of the precipitation occurrence (wet/dry)
and precipitation amount (Ailliot et al., 2015; Wilks & Wilby, 1999; Zhou et al., 2019). In this work we focus
on the discrete aspect: the generation of spatially and temporarily consistent dry/wet days series.

Richardson‐type generators have been successfully employed in a wide range of applications in hydrology,
agriculture, and environmental management. However, many applications require spatially consistent data,
reflecting not only the marginal statistics of the different sites but also intersite (or multisite) statistics such
as pairwise correlation (Fiener & Auerswald, 2009; Haile et al., 2009). A number of multisite WG methods
have been proposed in the literature, starting with the work of Wilks (1998), in which a multisite WG is pre-
sented that prescribes a spatial dependence pattern learnt from the data set. This dependence pattern is
simulated by generating uniformly distributed pairwise‐correlated series. Wet/dry days are simulated by
transforming these series using a threshold that corresponds to the wet‐wet and dry‐wet transition probabil-
ities. The correlation of the uniform random variables is chosen so that the final binary series have the
observed pairwise correlations.
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Existing approaches for multisite weather generation build on many different techniques to generate syn-
thetic spatially consistent series, such as empirical orthogonal function analysis (Zhou et al., 2019), weather
typing (Ailliot et al., 2015), nearest neighbours (Yates et al., 2003), and Gaussian processes (Kleiber et al.,
2012)—which permit the interpolation to locations where there are no direct observations—or more sophis-
ticated approximate Bayesian computation (ABC) methods for thresholded Gaussian processes (Olson &
Kleiber, 2017). In general, there is no overall best method, and the Wilks seminal contribution is still a good
first choice in terms of complexity and performance, as shown in different intercomparison studies (Keller
et al., 2015; Mehrotra et al., 2006). Moreover, this method is typically used as a benchmark to describe
new methodologies, thus allowing the (indirect) comparison of methods by contrasting their respective
improvement with respect to the Wilks benchmark. Therefore, we use the Wilks method for benchmarking
the new weather generation methodology based on Bayesian networks (BNs) introduced in this work.

BNs are a sound and popular machine learning technique which combines graphs and probability theory to
build tractable probabilistic models from data, representing the most relevant (pairwise and conditional)
dependencies among the variables (Castillo et al., 1997). BNs have gained widespread use in several fields
(Niedermayer, 2008; Pourret et al., 2008), boosted by the availability of several commercial and open soft-
ware packages allowing to efficiently learn them from data, such as the bnlearn popular implementation
in R used in this work (Scutari, 2010; Scutari & Denis, 2014). However, their application to environmental
sciences is still limited (Aguilera et al., 2011; Borunda et al., 2016; Uusitalo, 2007), and only a few applica-
tions for water resource management have been described in the literature (Phan et al., 2016; Ropero et al.,
2017). The use of BNs in meteorology was first described by Cano et al. (2004), illustrating their potential
application for weather prediction and generation. Most of the applications of BNs described so far in this
field correspond to probabilistic weather prediction and downscaling (Boneh et al., 2015; Cofiño et al.,
2002; Das & Ghosh, 2014, 2017; Hellman et al., 2012; Nandar, 2009; Sharma & Goyal, 2016; Smail, 2018),
and there are also some applications for drought/flood forecasting (Garrote et al., 2008; Madadgar &
Moradkhani, 2014). However, to our knowledge, a comprehensive application of BNs for stochastic weather
generation has not been described yet.

In this work we describe the application of BNs to stochastic weather generation of precipitation occurrence.
BNs learn tractable multivariate discrete models from the available historical data which encode the relevant
spatial and temporal dependencies among the stations. We illustrate the new methodology using a small
case study over Germany and validate the results using the Wilks WG (Wilks, 1998) as benchmark.

In order to facilitate the reproducibility of the results and testing the performance of the proposed methodol-
ogy, we have prepared an R package with the software used, which builds on the R package bnlearn (Scutari,
2010), and a Jupyter notebook illustrating the creation and use of some of the models presented in this work
(both available at https://github.com/MNLR/BNWeatherGen).

The remainder of this article is organized as follows: Section 2 explains the data used throughout this
work. Section 3 introduces and explains WGs. Section 4 introduces and explains BNs from a theoretical
perspective, and section 5 describes the methodology used to employ BNs as WGs. Since BNs require
the choice of a complexity parameter, section 6 is devoted to finding the optimal complexity. All gathered
results are described in section 7, and finally, section 8 gives the conclusions and establishes the future
lines of work.

2. Area of Study and Data

As an illustrative case study, we consider a subset of 11 stations in southeast Germany extracted from the
VALUE spatial validation experiment (Widmann et al., 2019). The data set is provided by the European
Climate Assessment & Dataset project (ECA&D), and the daily precipitation records used in this study range
from 1979 to 2008 (30 years, corresponding to the VALUE experimental period). We have restricted the
experiments to a subset of 11 stations for the sake of illustration and due to the computational cost of the
comprehensive analyses performed. Also, we treated observations from summer (JJA) and winter (DJF)
separately; that is, models are trained separately for each season using all the available daily data for the par-
ticular season. We omit the remaining seasons for brevity reasons, as results are analogous. In total, and hav-
ing removed observations with missing values (less than 5% of the days of the period considered), we have
2,668 daily observations for the JJA season and 2,614 for the DJF season. Since we require consecutive
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data for the WGs, the number of training instances left for the BNs are 2,548 and 2,553 for the JJA and DJF
seasons, respectively.

Discretization has been carried out with a day considered dry if precipitation amount was lower than 1mm
and wet otherwise. Table 1 describes the stations, including geographical information and some basic mar-
ginal and temporal statistics which will be used later in the study: wet‐day frequencies (WF) and mean of
annual maxima dry (DS)/wet (WS) spells. ID is the unique code that identifies the stations in the ECA&D
data sets, and Code is the unique code used throughout this work. The orography of the region is shown
in Figure 1a.

3. Multisite Weather Generators

Given a set of stations {1,…, p}, we consider the random variableX = (X1,…, Xp), where each Xi characterizes
rainfall occurrence (binary) at station i = 1, …, p (p = 11 in this work). If Xi = 1 codifies a wet day at station i
and Xi = 0 a dry day at station i, a multivariate WG can be viewed as a model to obtain samples from the dis-
tribution P(Xt | Xt−1, Xt−2, …), where Xt means X at time slice t. It is often simplified according to Markov
assumption as a Markov‐1 process, in which the future is assumed to be dependent on just the day before,
that is,

PðXt jXt−1; Xt−2; … Þ ≈ PðXt jXt−1Þ ¼ PððXt
1; …; X

t
pÞ jXt−1Þ: (1)

Due to the difficulties in obtaining a tractable multivariate estimation of the above distribution, this process

is often achieved by first computing P sampling from the univariate distributions PðXt
i jXt−1

i Þ; i¼ 1; …; p,

with the first step in a WG being computing the probabilities P01
i ¼ PðXt

i ¼ 1 jXt−1
i ¼ 0Þ and P11

i ¼ PðXt
i ¼ 1

j Xt−1
i ¼ 1Þ from the data set, often referred to as the transition probabilities.

Then, random number generators are employed to generate weather series that follow these transitions. For
multisiteWGs, these random numbers are often correlated to mimic the correlations observed between pairs
as an ad hoc methodology to impose the desired spatial structure. This is the case for the Wilks WG
(see Wilks, 1998 and an evaluation in Mehrotra et al., 2006), which we use in this work as a benchmark
for the new proposed methodology.

4. Bayesian Networks

Characterizing a multivariate discrete probability distribution such as (1) involves an intractable number
of parameters that grows exponentially with the number of variables, thus hindering practical applica-
tions. Bayesian networks (Castillo et al., 1997; Pearl, 1988; Scutari & Denis, 2014) are probabilistic graphi-
cal models that combine graph and probability theories to efficiently learn from data the Joint Probability
Distribution (JPD) of a set of discrete random variables, while also representing their relationships in an
easy‐to‐interpret graph. For a set of discrete random variables fX1; X2; :::; Xp describing the quantities of

interest (rainfall occurrence in a network of p stations in this case), the JPD P(X1,…,Xp) has 2p possible
categories and thus requires 2p−1 parameters. This poses a practical problem, since even in the case when
this is feasible computationally, we are unlikely to have a large enough data set to be able to adjust that
many parameters.

A BN builds on a directed acyclic graph (DAG)—a directed graph with no directed cycles and each node
associated with one variable Xi—which encodes the dependence and independence relationships among
the variables, so if there is no arc connecting two nodes, the corresponding variables are either indepen-
dent or conditionally independent given a subset of the remaining variables. In the example from
Figure 1b, station 5 is independent of any other station given we know the values of stations 3,7,
and 8. These nodes are the so‐called Markov Blanket for node 5. These relationships are formalized
through the concept of d‐separation (see Scutari & Denis, 2014 and Koller & Friedman, 2009 for a formal
definition of these concepts).

The independencies defined by d‐separation in the graph imply a factorization of the JPD in terms of the
probabilities of each of the variables conditioned to its parents (for a configuration in the form X→Y, X is
a parent of Y) (Koller & Friedman, 2009):
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PðX1; …; XpÞ ≈ PdagðX1; …; XpÞ ¼ ∏
p

i ¼ 1
PðXi jπðXiÞÞ; (2)

where π(Xi) is the set of parents of node Xi in the graph. This factorization on the right‐hand side requires,
for each node, the specification of a conditional probability table (CPT), that is, a probability distribution

for the node conditional to each combination of the parents' states.
In turn, each of these CPTs require a total of (s(Xi)−1) ∗ s(π(Xi))
parameters, where s represents the number of states of the variable
or combination of variables. This results in a joint probability model
that requires only a moderate number of parameters, leading to par-
simonious data‐driven models.

For instance, Figure 1b shows the DAG approximating the JPD of the
set of stations described in the previous section (corresponding to
summer‐JJA data), implying the following factorization for the JPD:

PðX1; …; X11Þ ¼ PðX4ÞPðX10jX4ÞPðX9jX4; X10ÞPðX6jX4; X9; X6Þ…:

Each node's associated CPT depends on the factorization. For exam-
ple, there is a CPT associated to the term P(X9|π(X9)) for node X9. It
requires the specification of one parameter for the Bernoulli distri-
bution of node X9 (probability of rain at that station) for each con-
dition (X10 = 0,X 4 = 0), (X10 = 0,X 4 = 1), (X10 = 1,X 4 = 0), and
(X10 = 1,X 4 = 1), thus requiring (s(X9)−1) ∗ s(π(X9)) = (2−1) ∗ 4
parameters. For this node and this particular data set (JJA), we have
the CPT shown in Table 2, as estimated from the data using
Bayesian estimation.

Similarly, since X10 and X4 have one and no parents, respectively,
their CPTs are those in Table 3.

BNs also allow for a qualitative analysis of the dependencies and
independencies codified in the graph, and although this is not the
purpose of this work, they can be used for answering questions such
as “Is variable Xi independent of Xj given a set of variablesXk?”As we
will see later, the density of the graph can vary depending on the
complexity required for the particular problem/application, since a
DAG with more arcs captures more dependence relationships but
requires more parameters.

Table 1
Description of Meteorological Stations Used in This Study Located in Southeast Germany Showing the Code, ECA&D ID, Altitude (in meters), Longitude, Latitude,
Relative Wet‐Day Frequency (WF), and Mean of Longest Annual Dry (DS)/Wet (WS) Spells for Summer‐JJA (s) and Winter‐DJF (w)

Code ID Alt Lon Lat WFs WFw DSs DSw WSs WSw Location

1 4007 921 9.94 50.5 0.40 0.48 11.41 11.17 6.76 8.6 WASSERKUPPE
2 4572 415 10.17 49.39 0.33 0.36 13.28 13.20 5.14 5.57 ROTHENBURG OB DER TAUBER
3 4472 435 10.51 48.83 0.34 0.31 12.26 14.73 4.90 5.2 REIMLINGEN
4 4617 937 10.77 50.66 0.41 0.50 10.69 10.43 7.03 8.97 SCHMUCKE
5 52 515 11.54 48.16 0.40 0.34 9.55 13.17 5.59 5.27 MUENCHEN
6 4083 657 11.84 49.98 0.40 0.47 10.62 10.87 7.31 8.53 FICHTELBERG OBERFRANKEN
7 4004 365 12.1 49.04 0.35 0.33 11.55 12.90 5.48 4.8 REGENSBURG
8 4079 472 12.73 48.48 0.37 0.34 11.21 13.10 5.90 5.4 KR.ROTTAL‐INN FALKENBERG
9 4954 418 12.87 50.79 0.35 0.32 11.69 14.33 4.76 5.03 CHEMNITZ
10 488 1213 12.96 50.43 0.43 0.49 9.86 9.80 6.52 8.17 FICHTELBERG
11 483 227 13.76 51.13 0.33 0.33 12.59 12.5 5.31 4.47 DRESDEN‐KLOTZSCHE

Figure 1. (a) Orography of the regions of study in Southeast of Germany and
location of the 11 stations used in this study. (b) Example of a directed acyclic
graph showing the dependence structure among the stations.
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4.1. Learning Bayesian Networks from Data

From a practical point of view, the application of Bayesian networks to
real‐world problems depends on the availability of automatic learning
procedures to infer appropriate network structure (DAG) representing
the relevant independencies from a given data set. Unfortunately, this
problem has been shown to be NP‐hard (Chickering et al., 2004), since
the number of possible DAGs is superexponential on the number of nodes

and a graph with p nodes can have up to
1
2
pðp − 1Þ possible arcs. This

results in 2Oðp
2Þ possible graphs, and several heuristic methods have been developed for learning the graphi-

cal structure (structure learning) and estimating the probabilities (parametric learning) from data in reason-
able times.

Structure learning methods can be classified in either constraint‐based or score‐based approaches (Scutari &
Denis, 2014). Constraint‐based algorithms explore the possible conditional dependencies and independen-
cies among sets of variables by applying conditional independence tests, such as χ2, following the rationale
of placing an arc if two nodes are dependent given sets of different nodes. In this case, the graph is formed by
the aggregation of the local dependencies. These algorithms are very sensitive to failures in independence
tests performed. Scutari et al. (2019) analyzed the performance of different learning methods in climate pro-
blems and concluded that score‐based methods performed better than constraint‐based methods. Indeed, in
our experiments, constraint‐based algorithms have shown to yield poor results, so we restrict our study to
score‐based approaches.

Score‐based approaches search through the space of possible graphical structures maximizing a score that
evaluates howwell the graph represents the data set, returning the best model obtained after an iterative pro-
cess. Therefore, they require

• A score, which should be representative of how well the graph represents the data set, that is, a quality
measure (Heckerman et al., 1995). The most commonly used score is Bayesian information
criterion (BIC), introduced in (Schwarz, 1978) and equivalent to minimal description length (Lam &
Bacchus, 1994).

• An optimization algorithm, that is, a heuristic search to maximize the score, from simple greedy
approaches like hill‐climbing to more elaborate ones like genetic algorithms.

Structure learning can be formalized as finding the DAG G that maximizes PðG jDÞ, whereD is the data set.
It can be decomposed using Bayes theorem into

PðG jDÞ ¼ PðD jGÞPðGÞ
PðDÞ :

As PðDÞ is constant, the problem is equivalent to maximizing PðD jGÞPðGÞ , the product of the prior
distribution over the possible DAGs, P(G); and the probability of obtaining the data from the distribution
obtained by the factorization implied by G, PðD jGÞ (likelihood in the Bayesian setting). The term PðD jGÞ
is the actual theoretical score we are looking to maximize, with P(G) allowing us to introduce informed
priors, like linking a station with its past. It has been shown that PðD jGÞ can be approximated with a
bounded error by the so called BIC score, defined in the context of BNs as (Scutari & Denis, 2014)

BICðG; DÞ ¼ ∑
p

i ¼ 1
log PðXi jπðXiÞÞð Þ − k jΘðXiÞjð Þ; (3)

which profits again from the factorization 2. |Θ(Xi)| is the number
of parameters (probability values) for each CPT associated to each
node Xi, and k is the regularization parameter, which takes the value log
ðnÞ=2 (≈3.94 for this data set in JJA for building the DAG in Figure 1),
where n is the number of observations in the data set. This term pena-
lizes the score of high‐density DAGs, thus preventing the number of

Table 3
CPTs for Nodes X4 and X10, Stations 4 and 10 in Figure 1

s(π(X4)) ∅ s(π(X10)) X4 = 0 X4 = 1

P(X4 = 1) 0.41 P(X10 = 1) 0.21 0.74

Table 2
CPT for Node X9, Station 9 in Figure 1

s(π(X9))
X10 = 0,
X4 = 0

X10 = 1,
X4 = 0

X10 = 0,
X4 = 1

X10 = 1,
X4 = 1

P(X9 = 1) 0.04 0.52 0.27 0.78
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arcs from growing too large. Moreover, taking the logarithm accounts for the fact that, even when there
are a lot of observations, the complexity of the model grows exponentially. Although BIC score
specifically uses k¼ logðnÞ=2, a practical way to adjust the DAG complexity to our needs is by varying
this parameter. The lower this value, the more arcs the learning algorithm will place. It should be
noted that, when k = 1, this coincides with the Akaike information criterion (AIC) (Akaike, 1998).

Once the score is chosen, the optimization is carried out. Ideally, all possible DAGs would be searched for the
one that fits best. As we have stated before, the superexponential number of possible DAGs renders this
impossible, and heuristic approaches are required. The Tabu search algorithm (Glover, 1990; Koller &
Friedman, 2009) is a standard heuristic search procedure for maximizing the score in the discrete space of
possible DAGs. In its basic implementation, it is essentially a greedy approach (hill‐climbing) with amemory
that stores a backtrack of already visited DAGs and performs additional searches prohibiting previously vis-
ited local maxima, thus yielding generally better results than simple hill‐climbing, as described in Scutari
et al. (2019). The empirical complexity of greedy search is cubic in the number of nodes but can be reduced
to quadratic by constraining the search. The interested reader is referred to Scutari et al. (2019) for a detailed
analysis of the empirical complexity of different approaches as a function of both the number of nodes and
the size of data available.

Figure 1b shows the graph obtained with Tabu search for the default regularization parameter k = 3.94,
whereas Figures 2a and 2b show two alternative graphs obtained with k = 1 and 0.5, respectively, for JJA
(similar results are obtained for DJF, not shown). The number of parameters grows from 67 to 119 and to
719, respectively (with 22, 33, and 48 links). The parameter k is essential to avoid overfitting, and it can be
easily checked that with k = 0, the result of the algorithm would simply be the complete DAG, with the fac-
torization from Formula 2 being that of the chain rule (Castillo et al., 1997). Dense DAGs yield large parent
sets implying large CPTs which have to be estimated from data, in some cases based on few or no samples,
thus becoming unstable. For example, node 5 alone in Figure 2b requires a specification of a probability for
28 = 256 (eight parents) different realizations (combinations) of parents, many of which may not even be
present in the data set. In this work, we use the k = 1 intermediate network, a compromise between fitting
data and model simplicity (see section 6) which, as stated before, coincides with AIC (Akaike, 1998).

Once the DAG has been learned, parameter learning becomes straightforward. Probabilities can be esti-
mated from the observed frequencies (maximum likelihood estimation, MLE) or in a Bayesian setting, using
their posterior distribution (see, e.g., Sivia & Skilling, 2006 for the details of Bayesian estimation), a metho-
dology which prevents the parameters from being exactly 0 in order to avoid sparse tables, with lots of 0 cells.
This is required to fulfill regularity conditions of model estimation and inference methods (Koller &
Friedman, 2009; Scutari & Denis, 2014).

In particular, the software used in this work (The R package bnlearn Scutari, 2010) computes the posterior
estimates as a weighted mean of a flat prior and the empirical frequencies, as follows. In the factorization,

Figure 2. Two graphs learnt from data, as in 1b, but with decreasing regularization parameter (a) k = 1 and (b) k = 0.5, thus increasing the number of links and
parameters (NP). Note that Figure 1b was obtained with the same algorithm but with the default regularization parameter (k = 3.94); for the sake of comparison
with this figure, panel (a) shows in blue the graph with regularization parameter (k = 3.94) and the newly added links corresponding to k = 1 in red.
Note that these are descriptive networks, as they do not have a temporal aspect.
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suppose we have to estimate P(Xi = 1 | Xj = 0) and recall that P(Xi | Xj) = P(Xi, Xj)/P(Xj). If we denote asepXi;Xj

the maximum likelihood estimator of Xi = 1, Xj = 0 (i.e., the number of observations for which Xi = 1, Xj = 0
divided by the total number of observations) and epXj

is the number of observations for which Xj = 0 divided

by the number of observations, then the posterior estimate ePðXi ¼ 1 j Xj ¼ 0Þ is

ePðXi ¼ 1 j Xj ¼ 0Þ ¼
ePðXi ¼ 1; Xj ¼ 0Þ

ePðXj ¼ 0Þ ¼
n

nþ 1
epXi ; Xj

þ 1
nþ 1

πXi; Xj

n
nþ 1

epXj
þ 1
nþ 1

πXj

;

where n is the number of observations, πXi; Xj ¼ 1=4 and πXj ¼ 1=2, since we consider flat priors (uniform

distribution) and are working with binary variables. Note that if there are no observations to inform the

parameters, then we have ePðXi ¼ 1 jXj ¼ 0Þ ¼ 0:5. Other priors based on expert knowledge are possible,
but a sensitivity analysis to the choice of different priors is out of the scope of this work.

5. Bayesian Networks as Weather Generators

Bayesian networks allow the factorization of equation 1 according to equation 2 in the following way:

PðXt jXt−1Þ ¼ PððXt
1; …; X

t
pÞ jXt−1Þ ≈ ∏

i ¼ 1; …; p
PðXt

i jπðXiÞt; Xt−1Þ: (4)

This factorization provides a simple form for simulating, one by one, in ancestral ordering—first parents
then children—a synthetic value for each of the variables i = 1, …, n.

From now on, we refer to nodes in time slice t as present nodes and to nodes in time slice t−1 as past nodes.
Also, spatial arcs or dependencies join either two present or two past nodes, and temporalarcs join a past and
a present node (not necessarily in that direction).

Note that if we assume thatXt
i is independent of allX

t−1
j ; j ≠ i, givenXt−1

i (i.e., all information from the past

comes through the node's past value), then 4 can be expressed as

PðXt jXt−1Þ ≈ ∏
i ¼ 1; …; p

PðXt
i jπðXiÞt; Xt−1

i Þ; (5)

resulting in a very simple factorization where each present node Xt
i can be simulated once the value of

their corresponding past node Xt−1
i and the node's present parents π(Xi)

t are known. We refer to this
BN as Markov (see Figure 3a).

However, other less restrictive extended approaches can be easily considered to build the temporal depen-
dencies such as the Unconstrained approach (see Figure 3b), consisting on leaving the algorithm to automa-
tically learn both spatial and temporal dependencies by using an extended DAG for the extended set of

variables ðXt−1
1 ; …; Xt−1

p ; Xt
1; …; X

t
pÞ, where the new data set is built using the values of consecutive days.

However, this model may not be optimized for the particular task; for instance, only nodes X8 and X10 are
connected to its past counterparts, and all other nodes received information from the past through a different
node (building on the data). Therefore, we consider an additional model, obtained by augmenting the
Markov BN structure shown in Figure 3a by allowing the training algorithm to include additional links
according to the data (see Figure 3c). This model seems to be appropriate since this kind of dependence
seems highly likely. Taking into account the dependence structure encoded in the DAG, in practice, this
is done by forcing the algorithm to place an arc but letting it choose the direction (Formula 6 considers arcs
to go forward for simplicity, from t−1 to t). In practice, they can go backwards to build the most accurate
model (note that arcs do not represent causal relationships). We call this model the Augmented model, for
which Equation 4 becomes

PðXt jXt−1Þ ≈ ∏
i ¼ 1; …; p

PðXt
i jπðXiÞt; Xt−1

i ; πðXiÞt−1Þ; (6)

with π(Xi)
t and π(Xi)

t−1 being decided by the algorithm.
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Letting the algorithm decide the complete structure is the pure machine learning approach, whereas intro-
ducing the arcs means using expert knowledge (recall the term P(G) in section 4.1) in the assumption that

there is a direct dependence between a station on a particular day (Xt−1
i ) and that same station on the follow-

ing day (Xt
i ). We first learn the spatial structure (learning a DAG for just the stations, without temporary

slicing) and then add the temporal structure by adding the past nodes.

Figure 3. Different Bayesian network models considered for weather generation. (a) Markov, in which only temporal relationships between a node and its past
are permitted; (b) Unconstrained, in which the algorithm decides all the arcs; and (c) Augmented, in which the arcs between a node and its past are forced
(the direction is chosen by the algorithm) and the algorithm places the rest of the arcs. Note that arcs do not imply a causal relationships, and thus arcs
facing backwards are perfectly normal. Their actual direction is decided based on the d‐separation criterion (Scutari, 2010), which considers the dependence
relationships across all nodes. Also note that spatial arcs in the time slice t−1 have been removed for visualization purposes, but they are present in the model with
the same spatial structure as the one in time slice t.
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Once the network and the resulting probabilities have been learnt, the simulation process to generate
weather series is straightforward. A basic property of a DAG is that it has a node with no parents (Pearl,
2013), whose CPT is just its marginal probability distribution. There is also a topological order of the nodes
(ancestral ordering) X1≤…≤ Xp such that either π(Xi)≤ Xi or π(Xi) =∅, that is, parents are ordered before
children (note that π(X1) =∅). For the DAG in Figure 3b, we have X4≤ X10≤ X9≤ X6≤ X1≤ X7≤ X2≤ X3≤
X8≤ X5≤ X11 Finally, as we have explained in section 4, each node has a CPT associated, which comprises a
probability function for each combination of fathers' states.

We can generate instances by applying a simple iterative process. We assume that nodes are sorted following
an ancestral ordering. We start by X1, which has no parents, and simulate from its marginal distribution
(in Figure 1b, this is Station 4), obtaining X1 = x1. We then simulate X2, as X2 has either no parents or it
has X1 as a parent. In the first case, we simulate as with X1, and in the second case, we use its CPT P(X2 |
X1 = x1), obtaining X2 = x2 (in Figure 1b, this is Station 10). We follow this process with X3 up to the
last node.

When working with WGs, as with DAGs in Figure 3, we follow this same process by instantiating the past

nodes Xt−1
1 ; …; Xt−1

p by updating the probabilities of Xt
i ; i¼ 1; …; n conditioned to this evidence (see chap-

ters 8 and 9 Castillo et al., 1997), and then we follow the process explained above. That is, we start with an

observation X0 ¼ ðX0
1 ¼ x01; …; X

0
p ¼ x0pÞ, and we follow with PðXt

1 jXt−1 ¼X0Þ, obtaining x11. We then con-

tinue with PðXt
2 jXt

1 ¼ x11; X
t−1 ¼X0Þ, and so on. Once we obtain X1 ¼ ðX1

1 ¼ x11; …; X
1
p ¼ x1pÞ, it serves as

the next evidence to the iterative process.

6. Choice of the Regularization Parameter k Using Cross‐Validation

As explained in section 4.1, the regularization parameter k determines the type of model obtained from the
learning process, increasing its complexity (larger number of links and parameters) as k decreases
toward zero.

In the case of the Bayesian network weather generators, the BIC score is defined with a regularization para-
meter k¼ logðnÞ=2 ≈ 3:92, where n is the number of training instances, which penalizes the growth of the
number of arcs. However, other alternative values have been also considered in the literature, such as k = 1,
which corresponds to the AIC, a well‐known estimator of the quality of statistical model for a given data set
(Akaike, 1998). From a practical point of view, for the end‐user, it may be difficult to choose the value of this
parameter. By lowering k, the model might be able to better represent the JPD of the data, but care must be
taken when doing so, since the number of parameters grows exponentially as the number of arcs increases,
leading to overfitting and scarcity of data examples to estimate some of the probability values of the
CPT tables.

Therefore, in order to assess the choice of k, we considered the Augmented BN, shown in Figure 3c for k = 1,
and performed a cross‐validation experiment using a 5‐fold cross‐validation (see section 7.10 in Hastie et al.,
2009) by dividing the data set into five consecutive folds with the observations divided into the years
1979–1984, 1985–1990, 1991–1996, 1997–2002, and 2003–2008. Figure 4 shows the results obtained for each
k from 0.25 to 3.75 (mean across all five folds is shown).

The performance of the resulting models was measured considering the log‐likelihood of the data given the
models, for both the test and training data (Figure 4a). In order to test the complexity of the resultingmodels,
we considered the number of parameters (probabilities of the CPTs) and the percentage of those which can-
not be estimated from the data because there are no observations of the particular event; see section 4.1
(Figure 4b). Finally, the predictive capability was measured considering the area under the ROC curve
(AUC; see Bradley, 1997) when predicting precipitation occurrence given the past values in the test samples
(Figure 4c).

Based on these results, we choose k = 1 as a compromise between performance and complexity. Higher
values, as shown in Figure 5, tend to lose pairwise correlations, whereas panels (a) and (b) from Figure 4
indicate missing parameters and overfittedmodels for smaller values of k and, even though the potential pre-
dictive capability is slightly higher, the log‐likelihood in test samples falls substantially for k = 0.75. Finally,
this choice is supported by the fact that, as stated before, k = 1 corresponds to the AIC.
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7. Results

For a robust comparison of the weather generation models based on both the benchmark, the Wilks method
(Wilks, 1998), and the different Bayesian network (BN) models described in the previous sections, we built
each model and then generated 250 series of approximately equal length as that of the observational data set
(2,668 = 29 × 92 for JJA and 2,614 ≈ 29 × 90 for DJF). We replicated series of 92 and 90 continuous days for
seasons JJA and DJF, respectively, to account for the discontinuities in the observational data set, thus mak-
ing spell measures comparable for observed and synthetic series. BNs can generate a synthetic initial obser-
vation using (2); however, for the sake of comparison, we used a real observation as initial conditions for
bothWilks and Bayesian models (therefore, each generated series has 29 real observations). Throughout this
section, all measures are the mean of the 250 diagnostic measures computed for each series, and all results
are shown for the JJA season (in general, results for DJF season are similar and not shown) if it is not other-
wise specified.

Mehrotra et al. (2006) describes some diagnostics to assess and compare the performance of the Wilks WG.
Here we extend this analysis with some additional measures and compare the results against the BN WG.
We focus on the representation of both temporal and spatial aspects, including the combination of both
(spatiotemporal aspects). The results correspond to the Unconstrained and Augmented BNs, explained in
the previous section.

The common approach to validate the spatial coherence of weather generated series (against observations) is
to compute the correlation between pairs of stations (Mehrotra & Sharma, 2009; Mehrotra et al., 2006).
However, there are other aspects of the spatial coherence beyond marginal pairwise correlations, such as
the conditional dependencies (correlations) or frequency of different realizations. Also, spatiotemporal

Figure 4. Results of the Bayesian networks for different values of the regularization parameter k. Panels show (a) the log‐likelihood of the train and test data,
averaged across the data sets' lengths for easy comparison; (b) the number of parameters of the resulting models (numbers inside the panel indicate the
proportion of parameters which cannot be learnt from data for the three cases that this happens, corresponding to k = 0.25,0.5,0.75); and (c) the predictive
performance as measured by the area under the ROC curve (AUC).
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validation measures, which consider both spatial and temporal aspects altogether can be considered:
multisite spells and lagged cross‐correlations. We first consider the following measures covering the
spatial and spatiotemporal aspects of precipitation, which we expand with corresponding figures and
some summary error measures based on these (see Table 4):

(a) Pairwise correlations. This is the general performance measure used in previous works, as in
Wilks (1998).

(b) Conditional pairwise correlations, which measure the correlation
between pairs of stations conditional to a third station.

(c) 1‐day lagged cross‐correlations, as in Wilks (1998). Note that lagged
autocorrelation is included for easy comparison against lagged
cross‐correlations but is actually a temporal validity measure that
captures the same concept as the indices WW and DW in the next
section.

(d) Multisite dry/wet observations. We compare the frequency of obser-
vations for which there is a dry/wet day for all stations. This further
characterizes the spatial coherence of the simulated series.
Combined, these observations comprise 37% and 44% of the data set
for the JJA and DJF seasons, respectively.

Figure 5. (a) Correlation between pairs of stations plotted against the observed one for Bayesian networks (BN) with different regularization terms (k) and Wilks
models. The diagonal shows perfect adjustment. (b, c) Pairwise correlation conditioned to X7 = 0 (blue) and X7 = 1 (red) for the Wilks and Bayesian network
(k = 1) model, respectively. For marginal pairwise correlations, the mean absolute error for the Wilks model is 0.14. For the BN model with k = 1, the mean
absolute error is 1.18.

Table 4
Table of Summary Measures Used for Assessing the Spatial Coherence of
Weather Simulations

Name Description

Cor Mean pairwise correlation
CondCor Conditional mean pairwise correlation
LaggedCrossCor Lagged mean pairwise cross‐correlation
LaggedAutoCor Lagged mean autocorrelation
MultisiteDry Number of multisite dry observations
MultisiteWet Number of multisite wet observations

Note. Results are shown in Tables 5 and 6.
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(e) Multisite spells. Spells have already been analyzed in previous works, usually for each station individu-
ally. Here we also analyze spells occurring simultaneously in more than 90% of the stations, as done for
the model introduced in Kleiber et al. (2012). A similar measure has been analyzed in Olson and Kleiber
(2017), in which they consider wet spell counts.

Wilks (1998) shows that theWilks model precisely adjusts probabilities for the events (1,1) and (0,0) between
pairs of stations. This is also analyzed in Mehrotra et al. (2006), this time in terms of correlations. This same
analysis can be seen in Figure 5a. Clearly, Wilks model is nearly perfect, whereas BNs tend to have more dis-
persion, particularly for simple models with high regularization parameter (e.g., k = 3.92). However, this dis-
persion errors are mainly concentrated in the lowest observed correlations, as BNs aim to obtain a
compromise model for the whole JPD by sacrificing weaker correlations for the sake of model simplicity.
As stated before, the balance between complexity and loss can be achieved by varying the regularization
parameter k up to the desired point; for instance, k = 0.5 yields very similar results to the Wilks model.
The chosen model, with k = 1, shows a good compromise between parsimony and loss of correlations for
data sets of this size (see section 6).

To further analyze the spatial structure of the generated series, Figures 5b and 5c show an example of cor-
relation between pairs of stations, this time when we condition to Station 7. We observe that the BN is able

Figure 6. (a,b) Correlations between pairs of stations Xi, Xj given Xk = 0 (blue) and Xk = 1 (red), for all i, j, k = {1,…,11}, i ≠ j ≠ k stations, sorted by their observed
value in ascending order (x axis, rank). Observed values are shown as a blue (conditional on Xk = 0) and red (conditional on Xk = 1) line. Results are shown for the
JJA season. Mean absolute error (multiplied by 100) is 4.1 for the Wilks model and 1.9 for both BN models.

Figure 7. Simulated versus observed 1‐day lagged cross‐correlations for (a) DJF and (b) JJA for three different models: Wilks, Unconstrained (UC BN), and
Augmented (AUG BN) Bayesian network. Triangle‐shaped points represent the autocorrelation values between stations. Mean absolute errors (multiplied by
100) are 9.2 (JJA), 12 (DJF) for the Wilks model; 1.7 for both seasons for the Augmented model; and 1.9 (JJA), 2 (DJF) for the Unconstrained BN model.
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to adjust reasonably well to this correlations, whereas Wilks model has more bias. This behavior can be seen
very clearly in Figure 6, in which we show all correlation values between pairs of stations conditional to a
third one, sorted by their observed value in ascending order. This suggests that there is no real adjustment
in the Wilks model for these correlations depending on the condition and that they adopt the mean value
between the two: for instance, the correlation of X1 and X6, given that variable X7 = 0(1) obtained directly
for data is 0.512(0.297), similar to the values simulated from the BN, 0.512(0.299). However, theWilks model
provides noninformative conditional correlations, 0.437 (0.420); that is, the spatial structure is not consistent
for the evidence on the state of station X7. Not reproducing conditional correlations implies that the model
may fail to represent complex orographical or physical (weather states) constraints.

These results raise a warning about the fact that Wilks model simulations are only pairwise coherent and
might not be representative of more general (conditional) dependencies encoded in the data set.

Along with spatial coherence, stations are also cross‐correlated between time slices due to, for example, the
tendency for precipitation systems to move from west to east (spatiotemporal coherence). Wilks (1998) con-
siders the 1‐day lagged cross‐correlation measure, showing that his model has a considerable bias in this
aspect, greatly underestimating these correlation pairs. Figure 7 shows these values for both seasons (as dif-
ference in correlations is relevant). BNs clearly outperform the Wilks model and simulate reasonably well
lagged cross‐correlations. Not surprisingly, the autocorrelations (marked as a triangle in the plot) are well
captured by Wilks model, whereas the BNs tends to perform as well as for the cross‐correlations
(see Tables 5 and 6).

Regarding multisite observations, we show the results in Table 7. We see a clear overestimation of multisite
wet days and an underestimation of multisite dry days by the Wilks model. In order to test whether the
observed frequencies can be considered a plausible simulation obtained with the Wilks and BN models
(among the 250 runs performed for each model), we performed a standard hypothesis test for proportions
(Zou et al., 2003), with the null hypothesis H0 : p − p0 = 0 and alternative hypothesis Ha: p − p0 ≠ 0. p
corresponds to the mean model proportion of multisite dry/wet days, and p0 is the corresponding observed
frequency.

Table 5
Spatial Validation Summary of Error Results for the Wilks Model, Unconstrained (UN), and Augmented (AUG) Bayesian
Network Models for the JJA Season

Measure Wilks UN AUG

Cor 0.14 (−0.35) 1.18 (−4.13) 1.22 (−4.53)
CondCor 4.10 (12) 1.90 (‐9.9) 1.90 (‐9.6)
LaggedCrossCor 9.20 (−21.0) 1.90 (−6.5) 1.70 (‐7.0)
LaggedAutoCor 0.31 (‐0.56) 2.27 (−3.9) 0.55 (−0.94)
MultisiteDry −8.68 ‐4.34 −4.40
MultisiteWet 23.83 −3.71 ‐3.63

Note. For the first four measures, we show the absolute errors multiplied by 100 for easy visualization, that is, 100·|s−o|,
for the simulated measures (s) and the observed (o) measures. Worst value (multiplied by 100) is shown between par-

entheses. For the multisite observations (last two rows), we show relative errors in percentage, that is, 100 ·
s − o
o

.

Boldface indicates the best (mean) results for each measure.

Table 6
As With Table 5, for DJF Season

Measure Wilks UN AUG

Cor 0.14 (−0.35) 1.2 (−4.10) 1.2 (−4.60)
CondCor 3.90 (17.0) 1.7 (9.5) 1.7 (9.0)
LaggedCrossCor 12.0 (−23) 2.0 (−6.8) 1.7 (‐4.6)
LaggedAutoCor 0.6 (‐0.3) 2.7 (−6.8) 0.9 (−1.6)
MultisiteDry −6.26 ‐3.14 −3.97
MultisiteWet 13.99 ‐6.54 −6.64
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The resulting p‐values are included in Table 8. For the Wilks model, hypothesis test rejects the null hypoth-
esis with a significance of 99.5% for observations in JJA season and of 97.5% in DJF season. We conclude
from the hypothesis test that the BN clearly outperforms the Wilks model in mimicking the proportions
of multisite dry and wet observations.

As stated before, we have also considered the multisite spells. Previous studies usually consider spell mea-
sures (consecutive sequences of dry/wet days), but they do this for each station, without taking into account
multisite spells. In combination with the proportions of multisite dry/wet observations and 1‐day lagged
cross‐correlations, this addresses the spatiotemporal aspect of the simulated series. We compare the percen-
tiles of the distribution of multisite spells, in which a day is considered wet/dry if it is wet/dry in over 90% of
the stations. These are shown in Figure 8. Even if there is a clear underestimation of dry spells for both sea-
sons and models, the BN model also outperforms Wilks model. Multisite wet spells are not very long in this
small region, and results are very similar for both methods.

Finally, we analyze some measures whose aim is to compare the Wilks WG against the BN models in terms
of temporal consistency alone, as is done in, for example, Mehrotra et al. (2006). The measures are computed
for each station and the mean value and standard deviation are shown, with each measure explained in
Table 9.

Results are shown in Table 10 and for JJA season, with DJF having similar results. A similar performance is
found forWilks and BNmodels, with largest differences for DW andWW (transition probabilities) which, as
explained before, are directly calibrated with the Wilks model (note how this exhibits a similar behavior as
that of pairwise correlations). In the case of the BNs, these probabilities are not direct parameters of themod-
els and, therefore, have slightly higher errors (smaller for the case of the Augmented model, which forces
these transition probabilities to be considered by the model). The relative errors are 0.011 for DW 0.006
for WW.

In some cases, the models perform poorly in capturing spells, which is a well‐known flaw in current WGs. In
particular, all models highly underestimate droughts (extreme droughts by 10% for JJA and up to 30% for
DJF); this could be attributed to considering a first‐order Markov process (Ailliot et al., 2015; Mehrotra et al.,
2006; Wilks & Wilby, 1999) and is slightly alleviated by the Augmented model, as opposed to the
Unconstrained version.

8. Conclusions and Future Lines of Work

We introduced Bayesian networks as a newmethodology with a well‐established theoretical background for
simulating discrete multisite precipitation series, mimicking spatial and temporal aspects simultaneously.
The performance of this method was assessed thorough a spatiotemporal validation analysis using the
Wilks model as benchmark.

Table 7
Multisite Dry/Wet Observations Compared to the Observed Values (first row)

Model Dry JJA DJF Wet JJA DJF

Observed 795 878 193 286
Wilks 726(26.8) 823(32.6) 239(17.9) 326(22.2)
BN 760(30.3) 843(41.5) 186(16.1) 267(18.4)

Note. BN corresponds to the Augmented Bayesian network model, as results are similar for the Unconstrained model.
Values are the mean of the 250 simulated series, with the standard deviation shown between parentheses.

Table 8
P Values of the Proportions Hypothesis Test with Null Hypothesis H0 : p− p0 = 0 and Alternative Hypothesis
Ha : p − p0 ≠ 0, where p is the Model Proportion and p0 is the Corresponding Observed Frequency of Dry/Wet Multisite
Observations And Both Seasons

Model Dry JJA DJF Wet JJA DJF

Wilks 0.004 0.024 0.001 0.012
BN 0.143 0.152 0.588 0.228
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Instead of focusing on pairwise dependencies among stations, BNs try to represent the whole probability dis-
tribution, considering all relevant conditional independencies (including pairwise as a particular case).
Thus, transition probabilities and pairwise correlations are expectedly better represented by Wilks model,
since this model directly adjusts them from the data set. However, when more complex features like lagged
cross‐correlations, multisite dry spells, or global proportions are analyzed, BNs perform better than Wilks
model. This illustrates the potential of this new approach, although further analysis with more complex
examples is necessary to fully test the advantages of this new methodology.

BNs are a sound machine learning technique supported by well‐known theory and algorithms and offer
some potential advantages compared to other approaches due to

Figure 8. Percentile values (from 5th to 95th) from the sample of multisite dry spell values for (a) JJA and (b) DJF and for multisite wet spells for (c) JJA and
(d) DJF seasons. Only spells affecting more than 90% of the territory (10 out of 11 stations) have been considered. For dry spells, spells greater than three days
are considered. For wet spells, since they are shorter, we consider spells starting in two consecutive days. Results for the Augmented Bayesian network model are
shown. Results for the Unconstrained model are similar.

Table 9
Table of Measures Used for the Performance Assessment of Temporal Coherence

Name Description

DW Dry‐wet transition probability
WW Wet‐wet transition probability
WetFreq Percentage of wet days
WetSpell (WS) Mean of wet spells
DrySpell (DS) Mean of dry spells
WSAnnualMean Mean of longest annual wet spells
DSAnnualMean Mean of longest annual dry spells
WSAnnualMax Maximum of longest annual wet spells
DSAnnualMax Maximum of longest annual dry spells

Note. All spell measures are in days (≥2) and probabilities are measured in percentage.
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1. Generalization: There is no need for an ad hoc adjustment of probabilities or correlations. BNs adjust the
whole distribution in a robust way, adapting to the local dependencies and characteristics implied by
existing records.

2. Flexible complexity: It may not be enough to just adjust transition probabilities for one particular loca-
tion; it may require data from other stations and/or previous time slices. It may also require information
from other locations combined.On the other hand, data may be scarce for computing one probability
value. A BN will automatically adapt to these situations.

3. Interpretability: A general property of BNs is their interpretability through their DAGs, which can be
easily interpreted and the dependence relationships analyzed in a user‐friendly way.

4. Expert knowledge: Apart from the information gathered from the data set, probabilistic models allow for
expert knowledge to be introduced in the model in a robust way. This feature, combined with interpret-
ability, potentially offers the possibility to further trim the model to user needs or to characteristics not
present in the existing data.

On the other hand, a disadvantage of this methodology is the increasing complexity and computation time
required to both learn and simulate from the models when the number of variables (and thus the number of
arcs) increases. There are a number of studies showing that BNs are tractable for problems from tens to a few
hundreds of variables (Scutari et al., 2019). In problems of larger complexity (hundreds or thousands of
stations), the complexity of the resulting model can be controlled through the regularization parameter k
(see section 6) or using more efficient learning and inference algorithms (Scutari et al., 2019).

This work paves the way for further investigating the potential of BNs in the field of WGs. We focused on the
discrete step of the precipitation modeling process, with the continuous counterpart (i.e., precipitation
amount on wet days) remaining to be studied in depth. There are several options: Discrete series, either bin-
ary or with more bins, could be coupled with an already implemented continuous model for evaluating the
added value to the continuous aspect of the problem. The next step should be making use of continuous BNs,
either as a separate model for the precipitation amount or even mixing discrete and continuous nodes in the
same model (hybrid BNs). It should be noted that this poses a considerable challenge, as BNs with contin-
uous nodes have restrictions (both in the distributions for the continuous nodes and the placement of the
arcs) that hinder their application to the problem of modeling the precipitation amount probability distribu-
tion, usually considered a gamma distribution.

Another potential is exploring conditional WGs extending the proposed methodology considering nodes
with GCM outputs, either at a gridbox level or clustered as weather types. This could potentially improve
the overall model performance in certain measures like multisite spells and, on the other hand, provide sto-
chastic climate change projections. Finally, spell reproducibility could also be improved by adding an addi-
tional node or set of nodes to track more than one day, making it a higher‐order Markov model.

In order to facilitate reproducibility of the results and testing the performance of the proposed methodology,
we have prepared an R package, BNWeatherGen—which builds on the R package bnlearn (Scutari, 2010)—
and a Jupyter notebook illustrating the creation and use of some of the models presented in this work

Table 10
Results for the Wilks Model and Bayesian Network Models for the JJA Season

Measure Observed Wilks UN AUG

DW 28.72 (2.18) 0.06 (0.04) 0.86 (0.55) 0.32 (0.16)
WW 51.89 (4.85) 0.09 (0.06) 1.33 (0.56) 0.33 (0.29)
WetFreq 37.44 (3.61) 0.09 (0.06) 0.17 (0.12) 0.1 (0.07)
WetSpell 3.10 (0.24) 0.05 (0.04) 0.08 (0.07) 0.05 (0.04)
DrySpell 4.57 (0.26) 0.16 (0.09) 0.15 (0.11) 0.07 (0.08)
WSAnnualMean 5.88 (0.89) 0.30 (0.18) 0.35 (0.26) 0.28 (0.19)
DSAnnualMean 11.34 (1.13) 0.80 (0.50) 0.72 (0.51) 0.51 (0.38)
WSAnnualMax 10.73 (1.90) 0.96 (0.80) 0.85 (0.87) 1.03 (0.74)
DSAnnualMax 21.18 (4.05) 2.55 (2.58) 2.54 (2.46) 2.5 (2.18)

Note. “Observed” column shows the mean (and standard deviation) of the observed values of the stations. The three last
columns indicate absolute errors, that is, |s−o|, between the diagnostics for simulations (s) and observations (o), again
in terms of mean and standard deviations. Boldface indicates the best (mean) results for each index.
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(both available at https://github.com/MNLR/BNWeatherGen). The notebook also contains an additional
larger example (44 stations) used to illustrate the complexity and scalability of the proposed methodology,
so interested readers can explore different learning alternatives. In particular, for the 44 stations example,
learning and simulation can be undertaken in a personal computer in less than 10min using the default
configuration of the package.
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