325 research outputs found

    Analysis of multivariate stochastic signals sampled by on-line particle analyzers: Application to the quantitative assessment of occupational exposure to NOAA in multisource industrial scenarios (MSIS)

    Get PDF
    In multisource industrial scenarios (MSIS) coexist NOAA generating activities with other productive sources of airborne particles, such as parallel processes of manufacturing or electrical and diesel machinery. A distinctive characteristic of MSIS is the spatially complex distribution of aerosol sources, as well as their potential differences in dynamics, due to the feasibility of multi-task configuration at a given time. Thus, the background signal is expected to challenge the aerosol analyzers at a probably wide range of concentrations and size distributions, depending of the multisource configuration at a given time. Monitoring and prediction by using statistical analysis of time series captured by on-line particle analyzersin industrial scenarios, have been proven to be feasible in predicting PNC evolution provided a given quality of net signals (difference between signal at source and background). However the analysis and modelling of non-consistent time series, influenced by low levels of SNR (Signal-Noise Ratio) could build a misleading basis for decision making. In this context, this work explores the use of stochastic models based on ARIMA methodology to monitor and predict exposure values (PNC). The study was carried out in a MSIS where an case study focused on the manufacture of perforated tablets of nano-TiO2 by cold pressing was performed.Research carried out by projects SCAFFOLD and EHS Advance were made possible thanks to funding from European Commission through FP7 (GA 319092) and Basque Country Government through ETORTEK Programme

    The long-term safety of chronic azithromycin use in adult patients with cystic fibrosis, evaluating biomarkers for renal function, hepatic function and electrical properties of the heart

    Get PDF
    Background: Azithromycin maintenance therapy is widely used in cystic fibrosis (CF), but little is known about its long-term safety. We investigated whether chronic azithromycin use is safe regarding renal function, hepatic cell toxicity and QTc-interval prolongation. Methods: Adult CF patients (72 patients using azithromycin for a cumulative period of 364.8 years and 19 controls, 108.8 years) from two CF-centers in the Netherlands with azithromycin (non)-use for at least three uninterrupted years were studied retrospectively. Results: There was no difference in mean decline of estimated glomerular filtration rate (eGFR), nor in occurrence of eGFR-events. No drug-induced liver injury could be attributed to azithromycin. Of the 39 azithromycin users of whom an ECG was available, 4/39 (10.3%) had borderline and 4/39 (10.3%) prolonged QTc-intervals, with 7/8 patients using other QTc-prolonging medication. Of the control patients 1/6 (16.7%) had a borderline QTc-interval, without using other QTc-prolonging medication. No cardiac arrhythmias were observed. Conclusion: We observed no renal or hepatic toxicity, nor cardiac arrythmias during azithromycin use in CF patients for a mean study duration of more than 5 years. One should be aware of possible QTc-interval prolongation, in particular in patients using other QTc-interval prolonging medication

    2-Photon Absorption And 3Rd-Harmonic Generation Of Di-Alkyl-Amino-Nitro-Stilbene (Dans) - A Joint Experimental And Theoretical-Study

    Get PDF
    The one- and two-photon optical absorption spectra as well as the frequency dependent third-harmonic generation response of a side-chain polymer containing 4-dialkylamino-4\u27-nitro-stilbene (DANS) as its side group have been measured over a wide range of frequency. A three-state model, based on an intermediate neglect of differential overlap/multireference double-configuration interaction description of the excited states, provides a coherent picture of the dynamic response of DANS, but fails in reproducing the red shift observed when going from the linear to the nonlinear absorption spectra; including vibronic coupling within the Franck-Condon approximation improves the fit

    Adherence to low-dose methotrexate in children with juvenile idiopathic arthritis using a sensitive methotrexate assay

    Get PDF
    BACKGROUND: Low-dose weekly methotrexate (MTX) is the mainstay of treatment in juvenile idiopathic arthritis. Unfortunately, a substantial part of patients has insufficient efficacy of MTX. A potential cause of this inadequate response is suboptimal drug adherence. The aim of this study was to assess MTX adherence in juvenile idiopathic arthritis patients by quantification of MTX concentrations in plasma. Secondly, the association between MTX concentrations and either self-reported adherence issues, or concomitant use of biologics was examined. METHODS: This was a retrospective, observational study using plasma samples from juvenile idiopathic arthritis patients. An ultrasensitive liquid chromatography-tandem mass spectrometry method was developed for quantification of MTX and its metabolite 7-hydroxy-MTX in plasma. The determined MTX plasma concentrations in juvenile idiopathic arthritis patients were compared with corresponding adherence limits, categorising them as either adherent or possibly non-adherent to MTX therapy. RESULTS: Plasma samples of 43 patients with juvenile idiopathic arthritis were analysed. Adherence to MTX in this population was 88% shortly after initiation of MTX therapy and decreased to 77% after one year of treatment. Teenagers were more at risk for non-adherence (p = 0.002). We could not find an association between MTX adherence with either self-reported adherence issues, nor with the use of concomitant biological treatment (p = 1.00 and p = 0.27, respectively; Fisher's Exact). CONCLUSIONS: Quantification of MTX in plasma is a feasible and objective method to assess adherence in patients using low-dose weekly MTX. In clinical practice, the use of this method could be a helpful tool for physicians to refute or support suspicion of non-adherence to MTX therapy

    A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site

    Get PDF
    This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≥3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda
    • …
    corecore