105 research outputs found

    What's hot in conservation biogeography in a changing climate? Going beyond species range dynamics

    Get PDF
    International audienceIn recent decades Earth's rapidly changing climate, driven by anthropogenic greenhouse gas emissions, has affected species distributions and phenology, ecological communities and ecosystem processes, effects that are increasingly being observed globally (Allen et al., 2010; Doney et al., 2012; Franklin, Serra‐Diaz, Syphard, & Regan, 2016; Parmesan, 2006; Walther et al., 2002). Pleistocene shifts in species ranges during glacial–interglacial transitions reveal large‐scale biome shifts and no‐analog species assemblages (MacDonald et al., 2008; Nolan et al., 2018; Williams & Jackson, 2007); the pace of current anthropogenic warming outstrips past changes in the Earth system and climate, however, leading to new climate novelties and ecological communities (Ordonez, Williams, & Svenning, 2016). Global scientific consensus now emphasizes that global warming should be kept to 1.5°C to avoid catastrophic changes in ecosystems and the services they provide to people (IPCC, 2018), and climate change threats to biodiversity are being prioritized in international policy response (Ferrier et al., 2016)

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km(2) resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km(2) pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10 degrees C (mean = 3.0 +/- 2.1 degrees C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 +/- 2.3 degrees C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 +/- 2.3 degrees C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.Peer reviewe

    Bouncing back : the wellbeing of children in international child abduction cases

    Get PDF
    This report contains the results of a three-part research project conducted in the framework of the project Enhancing the Well-being of Children in Cases of International Child Abduction (eWELL). Part I contains an overview of the results of a quantitative survey conducted among parents who have been in a situation of international parental child abduction. The quantitative survey data collection was financed by the European Commission and was undertaken by the University of Antwerp in collaboration with Centrum IKO, CFPE-Enfant Disparus, Child Focus, the French Central Authority and Missing Children Europe (MCE, the European umbrella organization for missing children). Part II provides an overview of the qualitative interview results conducted with children who were taken by to another country by one parent without the consent of the other. The qualitative data collection was co-financed by the European Commission and undertaken by the University of Antwerp, Centrum IKO, Child Focus, CFPE-Enfant Disparus, and in collaboration with the French Central Authority and Missing Children Europe (MCE, the European umbrella organization for missing children). Part III examines international parental child abduction court rulings, jurisdictions and the application of Art. 13 (2) of the 1980 Hague Convention on the Civil Aspects of International Child Abduction in Belgium, France and the Netherlands. It discusses age and maturity attainment and assessment; the involvement of intermediaries; the definition of the child’s objections to return and other relevant matters

    Plant traits poorly predict winner and loser shrub species in a warming tundra biome

    Full text link
    Climate change is leading to species redistributions. In the tundra biome, shrubs are generally expanding, but not all tundra shrub species will benefit from warming. Winner and loser species, and the characteristics that may determine success or failure, have not yet been fully identified. Here, we investigate whether past abundance changes, current range sizes and projected range shifts derived from species distribution models are related to plant trait values and intraspecific trait variation. We combined 17,921 trait records with observed past and modelled future distributions from 62 tundra shrub species across three continents. We found that species with greater variation in seed mass and specific leaf area had larger projected range shifts, and projected winner species had greater seed mass values. However, trait values and variation were not consistently related to current and projected ranges, nor to past abundance change. Overall, our findings indicate that abundance change and range shifts will not lead to directional modifications in shrub trait composition, since winner and loser species share relatively similar trait spaces

    SoilTemp: a global database of near-surface temperature

    Get PDF
    Current analyses and predictions of spatially-explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing, or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently this database contains time series from 7538 temperature sensors from 51 countries across all key biomes. The database will pave the way towards an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.Additional co-authors: Stuart W. Smith, Robert G. Björk, Lena Muffler, Simone Cesarz, Felix Gottschall, Amanda Ratier Backes, Joseph Okello, Josef Urban, Roman Plichta, Martin Svátek, Shyam S. Phartyal, Sonja Wipf, Nico Eisenhauer, Mihai Pușcaș, Pavel Dan Turtureanu, Andrej Varlagin, Romina D. Dimarco, Krystal Randall, Ellen Dorrepaal, Keith Larson, Josefine Walz, Luca Vitale, Miroslav Svoboda, Rebecca Finger Higgens, Aud H. Halbritter, Salvatore R. Curasi, Ian Klupar, Austin Koontz, William D. Pearse, Elizabeth Simpson, Michael Stemkovski, Bente Jessen Graae, Mia Vedel Sørensen, Toke T. Høye, M. Rosa Fernández Calzado, Juan Lorite, Michele Carbognani, Marcello Tomaselli, T'ai G.W. Forte, Alessandro Petraglia, Stef Haesen, Ben Somers, Koenraad Van Meerbeek, Mats P. Björkman, Kristoffer Hylander, Sonia Merinero, Mana Gharun, Nina Buchmann, Jiri Dolezal, Radim Matula, Andrew D. Thomas, Joseph J. Bailey, Dany Ghosn, George Kazakis, Miguel Angel de Pablo, Julia Kemppinen, Pekka Niittynen, Lisa Rew, Tim Seipel, Christian Larson, James D.M. Speed, Jonas Ardö, Nicoletta Cannone, Mauro Guglielmin, Francesco Malfasi, Maaike Y. Bader, Rafaella Canessa, Angela Stanisci, Juergen Kreyling, Jonas Schmeddes, Laurenz Teuber, Valeria Aschero, Marek Čiliak, František Máliš, Pallieter De Smedt, Sanne Govaert, Camille Meeussen, Pieter Vangansbeke, Khatuna Gigauri, Andrea Lamprecht, Harald Pauli, Klaus Steinbauer, Manuela Winkler, Masahito Ueyama, Martin A. Nuñez, Tudor‐Mihai Ursu, Sylvia Haider, Ronja E.M. Wedegärtner, Marko Smiljanic, Mario Trouillier, Martin Wilmking, Jan Altman, Josef Brůna, Lucia Hederová, Martin Macek, Matěj Man, Jan Wild, Pascal Vittoz, Meelis Pärtel, Peter Barančok, Róbert Kanka, Jozef Kollár, Andrej Palaj, Agustina Barros, Ana Clara Mazzolari, Marijn Bauters, Pascal Boeckx, José Luis Benito Alonso, Shengwei Zong, Valter Di Cecco, Zuzana Sitková, Katja Tielbörger, Liesbeth van den Brink, Robert Weigel, Jürgen Homeier, C. Johan Dahlberg, Sergiy Medinets, Volodymyr Medinets, Hans J. De Boeck, Miguel Portillo‐Estrada, Lore T. Verryckt, Ann Milbau, Gergana N. Daskalova, Haydn J.D. Thomas, Isla H. Myers‐Smith, Benjamin Blonder, Jörg G. Stephan, Patrice Descombes, Florian Zellweger, Esther R. Frei, Bernard Heinesch, Christopher Andrews, Jan Dick, Lukas Siebicke, Adrian Rocha, Rebecca A. Senior, Christian Rixen, Juan J. Jimenez, Julia Boike, Aníbal Pauchard, Thomas Scholten, Brett Scheffers, David Klinges, Edmund W. Basham, Jian Zhang, Zhaochen Zhang, Charly Géron, Fatih Fazlioglu, Onur Candan, Jhonatan Sallo Bravo, Filip Hrbacek, Kamil Laska, Edoardo Cremonese, Peter Haase, Fernando E. Moyano, Christian Rossi, and Ivan Nij

    Past Arctic aliens have passed away, current ones may stay

    Get PDF
    Published version. Source at http://doi.org/10.1007/s10530-015-0937-9.Increased human activity and climate change are expected to increase the numbers and impact of alien species in the Arctic, but knowledge of alien species is poor in most Arctic regions. Through field investigations over the last 10 years, and review of alien vascular plant records for the high Arctic Archipelago Svalbard over the past 130 years, we explored long term trends in persistence and phenology. In total, 448 observations of 105 taxa have been recorded from 28 sites. Recent surveys at 18 of these sites revealed that alien species had disappeared at half of them. Investigations at a further 49 sites characterised by former human activity and/or current tourist landing sites did not reveal any alien species. Patterns of alien species distribution suggest that greater alien species richness is more likely to be aligned with ongoing human inhabitation than sites of transient use. The probability of an alien species being in a more advanced phenological stage increased with higher mean July temperatures. As higher mean July temperatures are positively correlated with more recent year, the latter finding suggests a clear warming effect on the increased reproductive potential of alien plants, and thus an increased potential for spread in Svalbard. Given that both human activity and temperatures are expected to increase in the future, there is need to respond in policy and action to reduce the potential for further alien species introduction and spread in the Arctic

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.Additional co-authors: Brett R. Scheffers, Koenraad Van Meerbeek, Peter Aartsma, Otar Abdalaze, Mehdi Abedi, Rien Aerts, Negar Ahmadian, Antje Ahrends, Juha M. Alatalo, Jake M. Alexander, Camille Nina Allonsius, Jan Altman, Christof Ammann, Christian Andres, Christopher Andrews, Jonas Ardö, Nicola Arriga, Alberto Arzac, Valeria Aschero, Rafael L. Assis, Jakob Johann Assmann, Maaike Y. Bader, Khadijeh Bahalkeh, Peter Barančok, Isabel C. Barrio, Agustina Barros, Matti Barthel, Edmund W. Basham, Marijn Bauters, Manuele Bazzichetto, Luca Belelli Marchesini, Michael C. Bell, Juan C. Benavides, José Luis Benito Alonso, Bernd J. Berauer, Jarle W. Bjerke, Robert G. Björk, Mats P. Björkman, Katrin Björnsdóttir, Benjamin Blonder, Pascal Boeckx, Julia Boike, Stef Bokhorst, Bárbara N. S. Brum, Josef Brůna, Nina Buchmann, Pauline Buysse, José Luís Camargo, Otávio C. Campoe, Onur Candan, Rafaella Canessa, Nicoletta Cannone, Michele Carbognani, Jofre Carnicer, Angélica Casanova-Katny, Simone Cesarz, Bogdan Chojnicki, Philippe Choler, Steven L. Chown, Edgar F. Cifuentes, Marek Čiliak, Tamara Contador, Peter Convey, Elisabeth J. Cooper, Edoardo Cremonese, Salvatore R. Curasi, Robin Curtis, Maurizio Cutini, C. Johan Dahlberg, Gergana N. Daskalova, Miguel Angel de Pablo, Stefano Della Chiesa, Jürgen Dengler, Bart Deronde, Patrice Descombes, Valter Di Cecco, Michele Di Musciano, Jan Dick, Romina D. Dimarco, Jiri Dolezal, Ellen Dorrepaal, Jiří Dušek, Nico Eisenhauer, Lars Eklundh, Todd E. Erickson, Brigitta Erschbamer, Werner Eugster, Robert M. Ewers, Dan A. Exton, Nicolas Fanin, Fatih Fazlioglu, Iris Feigenwinter, Giuseppe Fenu, Olga Ferlian, M. Rosa Fernández Calzado, Eduardo Fernández-Pascual, Manfred Finckh, Rebecca Finger Higgens, T'ai G. W. Forte, Erika C. Freeman, Esther R. Frei, Eduardo Fuentes-Lillo, Rafael A. García, María B. García, Charly Géron, Mana Gharun, Dany Ghosn, Khatuna Gigauri, Anne Gobin, Ignacio Goded, Mathias Goeckede, Felix Gottschall, Keith Goulding, Sanne Govaert, Bente Jessen Graae, Sarah Greenwood, Caroline Greiser, Achim Grelle, Benoit Guénard, Mauro Guglielmin, Joannès Guillemot, Peter Haase, Sylvia Haider, Aud H. Halbritter, Maroof Hamid, Albin Hammerle, Arndt Hampe, Siri V. Haugum, Lucia Hederová, Bernard Heinesch, Carole Helfter, Daniel Hepenstrick, Maximiliane Herberich, Mathias Herbst, Luise Hermanutz, David S. Hik, Raúl Hoffrén, Jürgen Homeier, Lukas Hörtnagl, Toke T. Høye, Filip Hrbacek, Kristoffer Hylander, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Hervé Jactel, Järvi Järveoja, Szymon Jastrzębowski, Anke Jentsch, Juan J. Jiménez, Ingibjörg S. Jónsdóttir, Tommaso Jucker, Radoslaw Juszczak, Róbert Kanka, Vít Kašpar, George Kazakis, Julia Kelly, Anzar A. Khuroo, Leif Klemedtsson, Marcin Klisz, Natascha Kljun, Alexander Knohl, Johannes Kobler, Jozef Kollár, Martyna M. Kotowska, Bence Kovács, Juergen Kreyling, Andrea Lamprecht, Simone I. Lang, Christian Larson, Keith Larson, Kamil Laska, Guerric le Maire, Rachel I. Leihy, Luc Lens, Bengt Liljebladh, Annalea Lohila, Juan Lorite, Benjamin Loubet, Joshua Lynn, Martin Macek, Roy Mackenzie, Enzo Magliulo, Regine Maier, Francesco Malfasi, František Máliš, Matěj Man, Giovanni Manca, Antonio Manco, Tanguy Manise, Paraskevi Manolaki, Felipe Marciniak, Radim Matula, Ana Clara Mazzolari, Sergiy Medinets, Volodymyr Medinets, Camille Meeussen, Sonia Merinero, Rita de Cássia Guimarães Mesquita, Katrin Meusburger, Filip J. R. Meysman, Sean T. Michaletz, Ann Milbau, Dmitry Moiseev, Pavel Moiseev, Andrea Mondoni, Ruth Monfries, Leonardo Montagnani, Mikel Moriana-Armendariz, Umberto Morra di Cella, Martin Mörsdorf, Jonathan R. Mosedale, Lena Muffler, Miriam Muñoz-Rojas, Jonathan A. Myers, Isla H. Myers-Smith, Laszlo Nagy, Marianna Nardino, Ilona Naujokaitis-Lewis, Emily Newling, Lena Nicklas, Georg Niedrist, Armin Niessner, Mats B. Nilsson, Signe Normand, Marcelo D. Nosetto, Yann Nouvellon, Martin A. Nuñez, Romà Ogaya, Jérôme Ogée, Joseph Okello, Janusz Olejnik, Jørgen Eivind Olesen, Øystein Opedal, Simone Orsenigo, Andrej Palaj, Timo Pampuch, Alexey V. Panov, Meelis Pärtel, Ada Pastor, Aníbal Pauchard, Harald Pauli, Marian Pavelka, William D. Pearse, Matthias Peichl, Loïc Pellissier, Rachel M. Penczykowski, Josep Penuelas, Matteo Petit Bon, Alessandro Petraglia, Shyam S. Phartyal, Gareth K. Phoenix, Casimiro Pio, Andrea Pitacco, Camille Pitteloud, Roman Plichta, Francesco Porro, Miguel Portillo-Estrada, Jérôme Poulenard, Rafael Poyatos, Anatoly S. Prokushkin, Radoslaw Puchalka, Mihai Pușcaș, Dajana Radujković, Krystal Randall, Amanda Ratier Backes, Sabine Remmele, Wolfram Remmers, David Renault, Anita C. Risch, Christian Rixen, Sharon A. Robinson, Bjorn J.M. Robroek, Adrian V. Rocha, Christian Rossi, Graziano Rossi, Olivier Roupsard, Alexey V. Rubtsov, Patrick Saccone, Clotilde Sagot, Jhonatan Sallo Bravo, Cinthya C. Santos, Judith M. Sarneel, Tobias Scharnweber, Jonas Schmeddes, Marius Schmidt, Thomas Scholten, Max Schuchardt, Naomi Schwartz, Tony Scott, Julia Seeber, Ana Cristina Segalin de Andrade, Tim Seipel, Philipp Semenchuk, Rebecca A. Senior, Josep M. Serra-Diaz, Piotr Sewerniak, Ankit Shekhar, Nikita V. Sidenko, Lukas Siebicke, Laura Siegwart Collier, Elizabeth Simpson, David P. Siqueira, Zuzana Sitková, Johan Six, Marko Smiljanic, Stuart W. Smith, Sarah Smith-Tripp, Ben Somers, Mia Vedel Sørensen, José João L. L. Souza, Bartolomeu Israel Souza, Arildo Souza Dias, Marko J. Spasojevic, James D. M. Speed, Fabien Spicher, Angela Stanisci, Klaus Steinbauer, Rainer Steinbrecher, Michael Steinwandter, Michael Stemkovski, Jörg G. Stephan, Christian Stiegler, Stefan Stoll, Martin Svátek, Miroslav Svoboda, Torbern Tagesson, Andrew J. Tanentzap, Franziska Tanneberger, Jean-Paul Theurillat, Haydn J. D. Thomas, Andrew D. Thomas, Katja Tielbörger, Marcello Tomaselli, Urs Albert Treier, Mario Trouillier, Pavel Dan Turtureanu, Rosamond Tutton, Vilna A. Tyystjärvi, Masahito Ueyama, Karol Ujházy, Mariana Ujházyová, Domas Uogintas, Anastasiya V. Urban, Josef Urban, Marek Urbaniak, Tudor-Mihai Ursu, Francesco Primo Vaccari, Stijn Van de Vondel, Liesbeth van den Brink, Maarten Van Geel, Vigdis Vandvik, Pieter Vangansbeke, Andrej Varlagin, G.F. Veen, Elmar Veenendaal, Susanna E. Venn, Hans Verbeeck, Erik Verbrugggen, Frank G.A. Verheijen, Luis Villar, Luca Vitale, Pascal Vittoz, Maria Vives-Ingla, Jonathan von Oppen, Josefine Walz, Runxi Wang, Yifeng Wang, Robert G. Way, Ronja E. M. Wedegärtner, Robert Weigel, Jan Wild, Matthew Wilkinson, Martin Wilmking, Lisa Wingate, Manuela Winkler, Sonja Wipf, Georg Wohlfahrt, Georgios Xenakis, Yan Yang, Zicheng Yu, Kailiang Yu, Florian Zellweger, Jian Zhang, Zhaochen Zhang, Peng Zhao, Klaudia Ziemblińska, Reiner Zimmermann, Shengwei Zong, Viacheslav I. Zyryanov, Ivan Nijs, Jonathan Leno
    corecore