849 research outputs found

    Remarks on the consistency of minimal deviations from General Relativity

    Get PDF
    We study the consequences of the modification of the phase space structure of General Relativity imposed by breaking the full diffeomorphism invariance but retaining the time foliation preserving diffeomorphisms. We examine the different sectors in phase space that satisfy the new structure of constraints. For some sectors we find an infinite tower of constraints. In spite of that, we also show that these sectors allow for solutions, among them some well known families of black hole and cosmologies which fulfill all the constraints. We raise some physical concerns on the consequences of an absolute Galilean time, on the thermodynamical pathologies of such models and on their unusual vacuum structure.Comment: latex 28 pages, 1 figure. Added comments and a reference. Text improved

    An effective theory of accelerated expansion

    Get PDF
    We work out an effective theory of accelerated expansion to describe general phenomena of inflation and acceleration (dark energy) in the Universe. Our aim is to determine from theoretical grounds, in a physically-motivated and model independent way, which and how many (free) parameters are needed to broadly capture the physics of a theory describing cosmic acceleration. Our goal is to make as much as possible transparent the physical interpretation of the parameters describing the expansion. We show that, at leading order, there are five independent parameters, of which one can be constrained via general relativity tests. The other four parameters need to be determined by observing and measuring the cosmic expansion rate only, H(z). Therefore we suggest that future cosmology surveys focus on obtaining an accurate as possible measurement of H(z)H(z) to constrain the nature of accelerated expansion (dark energy and/or inflation).Comment: In press; minor changes, results unchange

    Binding interface change and cryptic variation in the evolution of protein-protein interactions

    Get PDF
    Background:Physical interactions between proteins are essential for almost all biological functions and systems. To understand the evolution of function it is therefore important to understand the evolution of molecular interactions. Of key importance is the evolution of binding specificity, the set of interactions made by a protein, since change in specificity can lead to “rewiring” of interaction networks. Unfortunately, the interfaces through which proteins interact are complex, typically containing many amino-acid residues that collectively must contribute to binding specificity as well as binding affinity, structural integrity of the interface and solubility in the unbound state. Results: In order to study the relationship between interface composition and binding specificity, we make use of paralogous pairs of yeast proteins. Immediately after duplication these paralogues will have identical sequences and protein products that make an identical set of interactions. As the sequences diverge, we can correlate amino-acid change in the interface with any change in the specificity of binding. We show that change in interface regions correlates only weakly with change in specificity, and many variants in interfaces are functionally equivalent. We show that many of the residue replacements within interfaces are silent with respect to their contribution to binding specificity. Conclusions: We conclude that such functionally-equivalent change has the potential to contribute to evolutionary plasticity in interfaces by creating cryptic variation, which in turn may provide the raw material for functional innovation and coevolution.BBSRCWellcome Trust Institutional Strategic Support Awar

    A silence black hole: Hawking radiation at the Hagedorn temperature

    Full text link
    We compute semi-classically the Hawking emission for different types of black hole in type II string theory. In particular we analyze the thermal transition between NS5 branes and Little String Theory, finding compelling evidence for information recovering. We find that once the near horizon limit is taken the emission of a full family of models is exactly thermal even if back-reaction is taken into account. Consequently these theories are non-unitary and can not convey any information about the black hole internal states. It is argue that this behaviour matches the string theory expectations. We suggest a plausible reason for the vanishing of the jet-quenching parameter in such theories.Comment: 18 pages, harvma

    Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction

    Get PDF
    Stratigraphic records from northwestern Pangea provide unique insight into global processes that occurred during the latest Permian extinction (LPE). We examined a detailed geochemical record of the Festningen section, Spitsbergen. A stepwise extinction is noted as: starting with (1) loss of carbonate shelly macrofauna, followed by (2) loss of siliceous sponges in conjunction with an abrupt change in ichnofabrics as well as dramatic change in the terrestrial environment, and (3) final loss of all trace fossils. We interpret loss of carbonate producers as related to shoaling of the lysocline in higher latitudes, in relationship to building atmospheric CO2. The loss of siliceous sponges is coincident with the global LPE event and is related to onset of high loading rates of toxic metals (Hg, As, Co) that we suggest are derived from Siberian Trap eruptions. The final extinction stage is coincident with redox-sen- sitive trace metal and other proxy data that suggest onset of anoxia after the other extinction events. These results show a remarkable record of progressive environmental deterioration in northwestern Pangea during the extinction crises

    The effective Lagrangian of dark energy from observations

    Get PDF
    Using observational data on the expansion rate of the universe (H(z)) we constrain the effective Lagrangian of the current accelerated expansion. Our results show that the effective potential is consistent with being flat i.e., a cosmological constant; it is also consistent with the field moving along an almost flat potential like a pseudo-Goldstone boson. We show that the potential of dark energy does not deviate from a constant at more than 6% over the redshift range 0 < z < 1. The data can be described by just a constant term in the Lagrangian and do not require any extra parameters; therefore there is no evidence for augmenting the number of parameters of the LCDM paradigm. We also find that the data justify the effective theory approach to describe accelerated expansion and that the allowed parameters range satisfy the expected hierarchy. Future data, both from cosmic chronometers and baryonic acoustic oscillations, that can measure H(z) at the % level, could greatly improve constraints on the flatness of the potential or shed some light on possible mechanisms driving the accelerated expansion. Besides the above result, it is shown that the effective Lagrangian of accelerated expansion can be constrained from cosmological observations in a model-independent way and that direct measurements of the expansion rate H(z) are most useful to do so.Comment: 9 pages, 3 figures, JCAP submitted. This paper presents a reconstruction of the dark energy potential. It is a companion to Moresco et al. 2012a, which presents new H(z) results and Moresco et al. 2012b, which provides cosmological parameter constraint

    Status of the XMM-Newton cross-calibration with SASv6.5.0

    Full text link
    Further achievements of the XMM-Newton cross-calibration - XMM internal as well as with other X-ray missions - are presented. We explain the major changes in the new version SASv6.5 of the XMM-Newton science analysis system. The current status of the cross-calibration of the three EPIC cameras is shown. Using a large sample of blazars, the pn energy redistribution at low energy could be further calibrated, correcting the overestimation of fluxes in the lowest energy regime. In the central CCDs of the MOSs, patches were identified at the bore-sight positions, leading to an underestimation of the low energy fluxes. The further improvement in the understanding of the cameras resulted in a good agreement of the EPIC instruments down to lowest energies. The latest release of the SAS software package already includes corrections for both effects as shown in several examples of different types of sources. Finally the XMM internal cross-calibration is completed by the presentation of the current cross-calibration status between EPIC and RGS instruments. Major efforts have been made in cross-calibrations with other X-ray missions, most importantly with Chandra, of course, but also with currently observing satellites like Swift.Comment: 6 pages, 23 figures. To appear in the proceedings of "The X-Ray Universe 2005" conference, 2005 Sept 26-30, El Escorial, Madrid, Spai

    Percutaneous tibial nerve stimulation in patients with severe low anterior resection syndrome: randomized clinical trial

    Get PDF
    Treatment of low anterior resection syndrome (LARS) is challenging. Percutaneous tibial nerve stimulation (PTNS) can improve select bowel disorders. An RCT was conducted to assess the efficacy of PTNS compared with sham stimulation in patients with severe LARS

    Rank-(n – 1) convexity and quasiconvexity for divergence free fields

    Get PDF
    The CAST experiment at CERN (European Organization of Nuclear Research) searches for axions from the sun. The axion is a pseudoscalar particle that was motivated by theory thirty years ago, with the intention to solve the strong CP problem. Together with the neutralino, the axion is one of the most promising dark matter candidates. The CAST experiment has been taking data during the last two years, setting an upper limit on the coupling of axions to photons more restrictive than from any other solar axion search in the mass range below 0.1 eV. In 2005 CAST will enter a new experimental phase extending the sensitivity of the experiment to higher axion masses. The CAST experiment strongly profits from technology developed for high energy physics and for X-ray astronomy: A superconducting prototype LHC magnet is used to convert potential axions to detectable X-rays in the 1-10 keV range via the inverse Primakoff effect. The most sensitive detector system of CAST is a spin-off from space technology, a Wolter I type X-ray optics in combination with a prototype pn-CCD developed for ESA's XMM-Newton mission. As in other rare event searches, background suppression and a thorough shielding concept is essential to improve the sensitivity of the experiment to the best possible. In this context CAST offers the opportunity to study the background of pn-CCDs and its long term behavior in a terrestrial environment with possible implications for future space applications. We will present a systematic study of the detector background of the pn-CCD of CAST based on the data acquired since 2002 including preliminary results of our background simulations.Comment: 11 pages, 8 figures, to appear in Proc. SPIE 5898, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XI
    • 

    corecore