588 research outputs found
The history of the forming and the features of the soil, lithological and geomorphological structure of the Jizzakh steppe as the basais for its natural zoning
The paper provides initial materials characterizing the complicated history of formation, natural soils and lithological-geomorphological conditions of the Jizzakh steppe before the beginning of reclamation development. It is shown that on the basis of soil-lithological and geomorphological zoning, the Jizzakh steppe is divided into a number of natural regions belonging to different levels (altitude levels) of the piedmont plain. In total, 22 districts have been identified within the Jizzakh steppe, including the foothill margins. On the piedmont plain itself, the regions are combined into two high-altitude levels: the upper step and the lower step or blanket zone. These two levels differ sharply in terms of drainage conditions and soil salinity. The upper level, covering the upper and middle parts of the alluvial fan, the high interconal Zaamin-Sanzar plain and the Lomakino plateau, is characterized by a weak manifestation of salinity due to relatively good drainage, except for the sloping depressions of the Lomakino plateau. In contrast to the upper level, the lower level, located in the blanket zone of the piedmont plain, is characterized by active natural salinization because of the poor drainage. The saline sediments of the Zaamin cone delta are characterized by the greatest thickness. To a lesser extent, the rocks of the Sanzar cone delta, which are drained by deep gullies, are salinized. The Khavast sloping plain is characterized by a strongly saline upper two-meter layer, with salt and gypsum content decreasing with depth. Thus, it is shown that high salinity and gypsum bearing rocks, as well as high groundwater salinity of the cone delta zone are the source of modern salt accumulation in soils of foothill Golodnostepskaya plain, as well as in soils of the cone delta zone of Djizak steppe
Tensor analyzing power Ayy in deuteron inclusive breakup at large Pt and spin structure of deuteron at short internucleonic distances
The Ayy data for deuteron inclusive breakup off hydrogen and carbon at a
deuteron momentum of 9.0 GeV/c and large Pt of emitted protons are presented.
The large values of Ayy independent of the target mass reflect the sensitivity
of the data to the deuteron spin structure. The data obtained at fixed and
plotted versus Pt clearly demonstrate the dependence of the deuteron spin
structure at short internucleonic distances on two variables. The data are
compared with the calculations using Paris, CD-Bonn and Karmanov's deuteron
wave functions.Comment: 4 pages, 2 figures, talk given at the SPIN2004 Conf., 10-16 Oct.
2004, Triest, Ital
Tensor Ayy and vector Ay analyzing powers in the H(d,d')X and ^{12}C(d,d')X reactons at initial deuteron momenta of 9 GeV/c in the region of baryonic resonances excitation
The angular dependence of the tensor Ayy and vector Ay analyzing powers in
the inelastic scattering of deuterons with a momentum of 9.0 GeV/c on hydrogen
and carbon have been measured. The range of measurements corresponds to the
baryonic resonance excitation with masses 2.2--2.6 GeV/c^2. The Ayy data being
in good agreement with the previous results demonstrate an approximate
scaling up to -1.5 (GeV/c)^2. The large values of A_y show a significant role
of the spin-dependent part of the elementary amplitude of the NN->NN* reaction.
The results of the experiment are compared with model predictions of the
plane-wave impulse approximation.Comment: 7 pages, 7 figures. submitted to Yad.Fi
Prospects for the measurement of muon-neutrino disappearance at the FNAL-Booster
Neutrino physics is nowadays receiving more and more attention as a possible
source of information for the long-standing problem of new physics beyond the
Standard Model. The recent measurement of the mixing angle in the
standard mixing oscillation scenario encourages us to pursue the still missing
results on leptonic CP violation and absolute neutrino masses. However,
puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE
Collaboration has been setup to undertake conclusive experiments to clarify the
muon-neutrino disappearance measurements at small , which will be able to
put severe constraints to models with more than the three-standard neutrinos,
or even to robustly measure the presence of a new kind of neutrino oscillation
for the first time. To this aim the use of the current FNAL-Booster neutrino
beam for a Short-Baseline experiment has been carefully evaluated. This
proposal refers to the use of magnetic spectrometers at two different sites,
Near and Far. Their positions have been extensively studied, together with the
possible performances of two OPERA-like spectrometers. The proposal is
constrained by availability of existing hardware and a time-schedule compatible
with the CERN project for a new more performant neutrino beam, which will
nicely extend the physics results achievable at the Booster. The possible FNAL
experiment will allow to clarify the current disappearance tension
with appearance and disappearance at the eV mass scale. Instead, a new
CERN neutrino beam would allow a further span in the parameter space together
with a refined control of systematics and, more relevant, the measurement of
the antineutrino sector, by upgrading the spectrometer with detectors currently
under R&D study.Comment: 76 pages, 52 figure
Precise measurement of the top quark mass in the dilepton channel at D0
We measure the top quark mass (mt) in ppbar collisions at a center of mass
energy of 1.96 TeV using dilepton ttbar->W+bW-bbar->l+nubl-nubarbbar events,
where l denotes an electron, a muon, or a tau that decays leptonically. The
data correspond to an integrated luminosity of 5.4 fb-1 collected with the D0
detector at the Fermilab Tevatron Collider. We obtain mt = 174.0 +- 1.8(stat)
+- 2.4(syst) GeV, which is in agreement with the current world average mt =
173.3 +- 1.1 GeV. This is currently the most precise measurement of mt in the
dilepton channel.Comment: 7 pages, 4 figure
Search for Zgamma events with large missing transverse energy in ppbar collisions at sqrt(s)=1.96 TeV
We present the first search for supersymmetry (SUSY) in Zgamma final states
with large missing transverse energy using data corresponding to an integrated
luminosity of 6.2 fb-1 collected with the D0 experiment in ppbar collisions at
sqrt(s)=1.96 TeV. This signature is predicted in gauge-mediated SUSY-breaking
models, where the lightest neutralino is the next-to-lightest supersymmetric
particle (NLSP) and is produced in pairs, possibly through decay from heavier
supersymmetric particles. The NLSP can decay either to a Z boson or a photon
and an associated gravitino that escapes detection. We exclude this model at
the 95% C.L. for SUSY breaking scales of Lambda < 87 TeV, corresponding to
neutralino masses of < 151 GeV.Comment: submitted to Phys. Rev. Let
Measurement of Leptonic Asymmetries and Top Quark Polarization in ttbar Production
We present measurements of lepton (l) angular distributions in ttbar -> W+ b
W- b -> l+ nu b l- nubar bbar decays produced in ppbar collisions at a
center-of-mass energy of sqrt(s)=1.96TeV, where l is an electron or muon. Using
data corresponding to an integrated luminosity of 5.4fb^-1, collected with the
D0 detector at the Fermilab Collider, we find that the angular distributions of
l- relative to anti-protons and l+ relative to protons are in agreement with
each other. Combining the two distributions and correcting for detector
acceptance we obtain the forward-backward asymmetry A^l_FB = (5.8 +- 5.1(stat)
+- 1.3(syst))%, compared to the standard model prediction of A^l_FB (predicted)
= (4.7 +- 0.1)%. This result is further combined with the measurement based on
the analysis of the l+jets final state to obtain A^l_FB = (11.8 +- 3.2)%.
Furthermore, we present a first study of the top-quark polarization.Comment: submitted versio
Measurement of the semileptonic charge asymmetry in B0 meson mixing with the D0 detector
We present a measurement of the semileptonic mixing asymmetry for B0 mesons,
a^d_{sl}, using two independent decay channels: B0 -> mu+D-X, with D- ->
K+pi-pi-; and B0 -> mu+D*-X, with D*- -> antiD0 pi-, antiD0 -> K+pi- (and
charge conjugate processes). We use a data sample corresponding to 10.4 fb^{-1}
of ppbar collisions at sqrt(s) = 1.96 TeV, collected with the D0 experiment at
the Fermilab Tevatron collider. We extract the charge asymmetries in these two
channels as a function of the visible proper decay length (VPDL) of the B0
meson, correct for detector-related asymmetries using data-driven methods, and
account for dilution from charge-symmetric processes using Monte Carlo
simulation. The final measurement combines four signal VPDL regions for each
channel, yielding a^d_{sl} = [0.68 \pm 0.45 \text{(stat.)} \pm 0.14
\text{(syst.)}]%. This is the single most precise measurement of this
parameter, with uncertainties smaller than the current world average of B
factory measurements.Comment: Version includes minor textual changes following peer review by
journal, most notably the updating of Ref. [21] to reflect the most recent
publicatio
Search for Decay
We have searched for the charmless hadronic decay of B0 mesons into two
neutral pions. Using 9.13fb^-1 taken at the Upsilon(4S) with the CLEO detector,
we obtain an improved upper limit for the branching fraction BR(B0-->pi0pi0) <
5.7*10^-6 at the 90% confidence level.Comment: pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
Journal Staff
We present the first measurements of the differential cross section d sigma/dp(T)(gamma) for the production of an isolated photon in association with at least two b-quark jets. The measurements consider photons with rapidities vertical bar y(gamma)vertical bar < 1.0 and transverse momenta 30 < p(T)(gamma) < 200 GeV. The b-quark jets are required to have p(T)(jet) > 15 GeVand vertical bar y(jet)vertical bar < 1.5. The ratio of differential production cross sections for gamma + 2 b-jets to gamma + b-jet as a function of p(T)(gamma) is also presented. The results are based on the proton-antiproton collision data at root s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next- to- leading order perturbative QCD calculations as well as predictions based on the k(T)- factorization approach and those from the sherpa and pythia Monte Carlo event generators
- …