1,384 research outputs found
Transdet: a matched-filter based algorithm for transit detection - application to simulated COROT light curves
We present a matched-filter based algorithm for transit detection and its
application to simulated COROT light curves. This algorithm stems from the work
by Bord\'e, Rouan & L\'eger (2003). We describe the different steps we intend
to take to discriminate between planets and stellar companions using the three
photometric bands provided by COROT. These steps include the search for
secondary transits, the search for ellipsoidal variability, and the study of
transit chromaticity. We also discuss the performance of this approach in the
context of blind tests organized inside the COROT exoplanet consortium.Comment: 6 pages, 4 figures, in Transiting Extrasolar Planets Workshop,
meeting held in Heidelberg, 25-28 September 200
Geometrical effects on the optical properties of quantum dots doped with a single magnetic atom
The emission spectra of individual self-assembled quantum dots containing a
single magnetic Mn atom differ strongly from dot to dot. The differences are
explained by the influence of the system geometry, specifically the in-plane
asymmetry of the quantum dot and the position of the Mn atom. Depending on both
these parameters, one has different characteristic emission features which
either reveal or hide the spin state of the magnetic atom. The observed
behavior in both zero field and under magnetic field can be explained
quantitatively by the interplay between the exciton-manganese exchange
interaction (dependent on the Mn position) and the anisotropic part of the
electron-hole exchange interaction (related to the asymmetry of the quantum
dot).Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let
2D Fourier Transform Spectroscopy of exciton-polaritons and their interactions
We investigate polariton-polariton interactions in a semiconductor
microcavity through two-dimensional Fourier transform (2DFT) spectroscopy. We
observe, in addition to the lower-lower and the upper-upper polariton
self-interaction, a lower-upper cross-interaction. This appears as separated
peaks in the on-diagonal and off-diagonal part of 2DFT spectra. Moreover, we
elucidate the role of the polariton dispersion through a fine structure in the
2DFT spectrum. Simulations, based on lower-upper polariton basis
Gross-Pitaevskii equations including both self and cross-interactions, result
in a 2DFT spectra in qualitative agreement with experiments
The optical spectrum of a large isolated polycyclic aromatic hydrocarbon: hexa-peri-hexabenzocoronene, C42H18
The first optical spectrum of an isolated polycyclic aromatic hydrocarbon
large enough to survive the photophysical conditions of the interstellar medium
is reported. Vibronic bands of the first electronic transition of the all
benzenoid polycyclic aromatic hydrocarbon hexa-peri-hexabenzocoronene were
observed in the 4080-4530 Angstrom range by resonant 2-color 2-photon
ionization spectroscopy. The strongest feature at 4264 Angstrom is estimated to
have an oscillator strength of f=1.4x10^-3, placing an upper limit on the
interstellar abundance of this polycyclic aromatic hydrocarbon at 4x10^12
cm^-2, accounting for a maximum of ~0.02% of interstellar carbon. This study
opens up the possibility to rigorously test neutral polycyclic aromatic
hydrocarbons as carriers of the diffuse interstellar bands in the near future.Comment: 9 pages, 1 figure. Fixed a typo on the frequency of the 'b' ban
Stellar Limb-Darkening Coefficients for CoRot and Kepler
Transiting exoplanets provide unparalleled access to the fundamental
parameters of both extrasolar planets and their host stars. We present
limb-darkening coefficients (LDCs) for the exoplanet hunting CoRot and Kepler
missions. The LDCs are calculated with ATLAS stellar atmospheric model grids
and span a wide range of Teff, log g, and metallically [M/H]. Both CoRot and
Kepler contain wide, nonstandard response functions, and are producing a large
inventory of high-quality transiting lightcurves, sensitive to stellar limb
darkening. Comparing the stellar model limb darkening to results from the first
seven CoRot planets, we find better fits are found when two model intensities
at the limb are excluded in the coefficient calculations. This calculation
method can help to avoid a major deficiency present at the limbs of the 1D
stellar models.Comment: Accepted for publication in A&A. 4 pages, 2 figures, 2 tables. Full
versions of tables 1 and 2 containing limb-darkening coefficients available
at http://vega.lpl.arizona.edu/~sing
Diagnostics for specific PAHs in the far-IR: searching neutral naphthalene and anthracene in the Red Rectangle
Context. In the framework of the interstellar polycyclic aromatic
hydrocarbons (PAHs) hypothesis, far-IR skeletal bands are expected to be a
fingerprint of single species in this class. Aims. We address the question of
detectability of low energy PAH vibrational bands, with respect to spectral
contrast and intensity ratio with ``classical'' Aromatic Infrared Bands (AIBs).
Methods. We extend our extablished Monte-Carlo model of the photophysics of
specific PAHs in astronomical environments, to include rotational and
anharmonic band structure. The required molecular parameters were calculated in
the framework of the Density Functional Theory. Results. We calculate the
detailed spectral profiles of three low-energy vibrational bands of neutral
naphthalene, and four low-energy vibrational bands of neutral anthracene. They
are used to establish detectability constraints based on intensity ratios with
``classical'' AIBs. A general procedure is suggested to select promising
diagnostics, and tested on available Infrared Space Observatory data for the
Red Rectangle nebula. Conclusions. The search for single, specific PAHs in the
far-IR is a challenging, but promising task, especially in view of the
forthcoming launch of the Herschel Space Observatory.Comment: 13 pages, 13 figures, accepted for publication in A&
Visible photodissociation spectroscopy of PAH cations and derivatives in the PIRENEA experiment
The electronic spectra of gas-phase cationic polycyclic aromatic hydrocarbons
(PAHs), trapped in the Fourier Transform Ion Cyclotron Resonance cell of the
PIRENEA experiment, have been measured by multiphoton dissociation spectroscopy
in the 430-480 nm spectral range using the radiation of a mid-band optical
parametric oscillator laser. We present here the spectra recorded for different
species of increasing size, namely the pyrene cation (C16H10+), the
1-methylpyrene cation (CH3-C16H9+), the coronene cation (C24H12+), and its
dehydrogenated derivative C24H10+. The experimental results are interpreted
with the help of time-dependent density functional theory calculations and
analysed using spectral information on the same species obtained from matrix
isolation spectroscopy data. A kinetic Monte Carlo code has also been used, in
the case of pyrene and coronene cations, to estimate the absorption
cross-sections of the measured electronic transitions. Gas-phase spectra of
highly reactive species such as dehydrogenated PAH cations are reported for the
first time
Electrowetting of liquid marbles
Electrowetting of water drops on structured superhydrophobic surfaces are known to cause an irreversible change from a slippy (Cassie-Baxter) to a sticky (Wenzel) regime. An alternative approach to using a water drop on a superhydrophobic surface to obtain a non-wetting system is to use a liquid marble on a smooth solid substrate. A liquid marble is a droplet coated in hydrophobic grains, which therefore carries its own solid surface structure as a conformal coating. Such droplets can be considered as perfect non-wetting systems having contact angles to smooth solid substrates of close to 180 degrees. In this work we report the electrowetting of liquid marbles made of water coated with hydrophobic lycopodium grains and show that the electrowetting is completely reversible. Marbles are shown to return to their initial contact angle for both ac and dc electrowetting and without requiring a threshold voltage to be exceeded. Furthermore, we provide a proof-of-principle demonstration that controlled motion of marbles on a finger electrode structure is possible
Prewetting transition on a weakly disordered substrate : evidence for a creeping film dynamics
We present the first microscopic images of the prewetting transition of a
liquid film on a solid surface. Pictures of the local coverage map of a helium
film on a cesium metal surface are taken while the temperature is raised
through the transition. The film edge is found to advance at constant
temperature by successive avalanches in a creep motion with a macroscopic
correlation length. The creep velocity varies strongly in a narrow temperature
range. The retreat motion is obtained only at much lower temperature,
conforming to the strong hysteresis observed for prewetting transition on a
disordered surface. Prewetting transition on such disordered surfaces appears
to give rise to dynamical phenomena similar to what is observed for domain wall
motions in 2D magnets.Comment: 7 pages, 3 figures, to be published in Euro.Phys.Let
Spreading of Latex Particles on a Substrate
We have investigated both experimentally and theoretically the spreading
behavior of latex particles deposited on solid substrates. These particles,
which are composed of cross-linked polymer chains, have an intrinsic elastic
modulus. We show that the elasticity must be considered to account for the
observed contact angle between the particle and the solid substrate, as
measured through atomic force microscopy techniques. In particular, the work of
adhesion computed within our model can be significantly larger than that from
the classical Dupr\'{e} formula.Comment: 7 pages, 7 figures, to appear in Europhys. Let
- …