2,573 research outputs found

    Increasing future gravitational-wave detectors sensitivity by means of amplitude filter cavities and quantum entanglement

    Full text link
    The future laser interferometric gravitational-wave detectors sensitivity can be improved using squeezed light. In particular, recently a scheme which uses the optical field with frequency dependent squeeze factor, prepared by means of a relatively short (~30 m) amplitude filter cavity, was proposed \cite{Corbitt2004-3}. Here we consider an improved version of this scheme, which allows to further reduce the quantum noise by exploiting the quantum entanglement between the optical fields at the filter cavity two ports.Comment: 10 pages, 7 figure

    Early Investigations and Recent Advances in Intraperitoneal Immunotherapy for Peritoneal Metastasis.

    Get PDF
    Peritoneal metastasis (PM) is an advanced stage malignancy largely refractory to modern therapy. Intraperitoneal (IP) immunotherapy offers a novel approach for the control of regional disease of the peritoneal cavity by breaking immune tolerance. These strategies include heightening T-cell response and vaccine induction of anti-cancer memory against tumor-associated antigens. Early investigations with chimeric antigen receptor T cells (CAR-T cells), vaccine-based therapies, dendritic cells (DCs) in combination with pro-inflammatory cytokines and natural killer cells (NKs), adoptive cell transfer, and immune checkpoint inhibitors represent significant advances in the treatment of PM. IP delivery of CAR-T cells has shown demonstrable suppression of tumors expressing carcinoembryonic antigen. This response was enhanced when IP injected CAR-T cells were combined with anti-PD-L1 or anti-Gr1. Similarly, CAR-T cells against folate receptor α expressing tumors improved T-cell tumor localization and survival when combined with CD137 co-stimulatory signaling. Moreover, IP immunotherapy with catumaxomab, a trifunctional antibody approved in Europe, targets epithelial cell adhesion molecule (EpCAM) and has shown considerable promise with control of malignant ascites. Herein, we discuss immunologic approaches under investigation for treatment of PM

    Single-photon optomechanics in the strong coupling regime

    Full text link
    We give a theoretical description of a coherently driven opto-mechanical system with a single added photon. The photon source is modeled as a cavity which initially contains one photon and which is irreversibly coupled to the opto-mechanical system. We show that the probability for the additional photon to be emitted by the opto-mechanical cavity will exhibit oscillations under a Lorentzian envelope, when the driven interaction with the mechanical resonator is strong enough. Our scheme provides a feasible route towards quantum state transfer between optical photons and micromechanical resonators.Comment: 14 pages, 6 figure

    A New Bound on Excess Frequency Noise in Second Harmonic Generation in PPKTP at the 10^-19 Level

    Get PDF
    We report a bound on the relative frequency fluctuations in nonlinear second harmonic generation. A 1064nm Nd:YAG laser is used to read out the phase of a Mach-Zehnder interferometer while PPKTP, a nonlinear crystal, is placed in each arm to generate second harmonic light. By comparing the arm length difference of the Mach Zehnder as read out by the fundamental 1064 nm light, and its second harmonic at 532 nm, we can bound the excess frequency noise introduced in the harmonic generation process. We report an amplitude spectral density of frequency noise with total RMS frequency deviation of 3mHz and a minimum value of 20 {\mu}Hz/rtHz over 250 seconds with a measurement bandwidth of 128 Hz, corresponding to an Allan deviation of 10^-19 at 20 seconds.Comment: Submitted to Optics Express June 201

    PREDICTION OF DEFORMATION CAUSED BY LANDSLIDES BASED ON GRAPH CONVOLUTION NETWORKS ALGORITHM AND DINSAR TECHNIQUE

    Get PDF
    Abstract. Around the world, the occurrence of landslides has become one of the greatest threats to human life, property, infrastructure, and natural environments. Despite extensive research and discussions on the spatiotemporal dependence of landslide displacements, there is still a lack of understanding concerning the factors that appear to control displacement distribution in landslides because of their significant variations. This paper implements a Graph Convolutional Network (GCN) to predict displacement following the Moio della Civitella landslide in southern Italy and identify factors that may affect the distribution of movement following the landslide. An interferometric technique, known as permanent scatter interferometry (PSI), has been developed based on Synthetic Aperture Radar (SAR) satellite imagery to derive permanent scatter points that can be used to represent the deformation of landslides. This study utilized the GCN regression model applied to PSs points and data reflecting geological and geomorphological factors to extract the interdependency between paired data points, resulting in an adjacency matrix of the interval [0, 0,8). The proposed model outperforms conventional machine learning and deep learning algorithms such as linear regression (LR), K-nearest neighbors (KNN), Support vector regression (SVR), Decision tree, lasso, and artificial neural network (ANN). The absolute error between the actual and predicted deformation is used to evaluate the proposed model, which is less than 2 millimeters for most test set points

    Broadening the high sensitivity range of squeezing-assisted interferometers by means of two-channel detection

    Get PDF
    For a squeezing-enhanced linear (so-called SU(2)) interferometer, we theoretically investigate the possibility to broaden the phase range of sub-shot-noise sensitivity. We show that this goal can be achieved by implementing detection in both output ports, with the optimal combination of the detectors outputs. With this modification, the interferometer has the phase sensitivity independent of the interferometer operation point and, similar to the standard dark port regime, is not affected by the laser technical (excess) noise. Provided that each detector is preceded by a phase-sensitive amplifier, this sensitivity could be also tolerant to the detection loss

    Sensitivity of Cross Sections for Elastic Nucleus-Nucleus Scattering to Halo Nucleus Density Distributions

    Full text link
    In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions of exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the 6^6He and 11^{11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in 6^6He and 11^{11}Li.Comment: 10 pages, 7 figures. Submitted to Proceedings of the 61 International Conference "Nucleus-2011" on the Problems of the Nuclear Spectroscopy and the Atomic Nuclear Structure, Sarov Nijzegorodskaya district, October 10-14, 201

    Exploration and stabilization of Ras1 mating zone: A mechanism with positive and negative feedbacks.

    Get PDF
    In mating fission yeast cells, sensing and response to extracellular pheromone concentrations occurs through an exploratory Cdc42 patch that stochastically samples the cell cortex before stabilizing towards a mating partner. Active Ras1 (Ras1-GTP), an upstream regulator of Cdc42, and Gap1, the GTPase-activating protein for Ras1, localize at the patch. We developed a reaction-diffusion model of Ras1 patch appearance and disappearance with a positive feedback by a Guanine nucleotide Exchange Factor (GEF) and Gap1 inhibition. The model is based on new estimates of Ras1-GDP, Ras1-GTP and Gap1 diffusion coefficients and rates of cytoplasmic exchange studied by FRAP. The model reproduces exploratory patch behavior and lack of Ras1 patch in cells lacking Gap1. Transition to a stable patch can occur by change of Gap1 rates constants or local increase of the positive feedback rate constants. The model predicts that the patch size and number of patches depend on the strength of positive and negative feedbacks. Measurements of Ras1 patch size and number in cells overexpressing the Ras1 GEF or Gap1 are consistent with the model
    corecore