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Abstract: For a squeezing-enhanced linear (so-called SU(2)) interferometer, we theoretically
investigate the possibility to broaden the phase range of sub-shot-noise sensitivity. We show
that this goal can be achieved by implementing detection in both output ports, with the optimal
combination of the detectors outputs. With this modification, the interferometer has the phase
sensitivity independent of the interferometer operation point and, similar to the standard dark
port regime, is not affected by the laser technical (excess) noise. Provided that each detector is
preceded by a phase-sensitive amplifier, this sensitivity could be also tolerant to the detection
loss.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical interferometry has been an efficient tool in a plethora of experiments, starting from
the well-known Michelson-Morley’s refutation of the ether theory [1] to the high-resolution
spectroscopy [2] and to the gravitational-wave detection [3]. The phase sensitivity of the
state-of-the-art optical interferometers is limited by the quantum fluctuations of the probing light
phase. In the simplest case of a coherent quantum state, the corresponding limit is known as the
shot-noise one (SNL):

∆ϕSNL =
1
√

N
(1)

where N is the number of quanta used for the measurement (the numerical factor could vary
depending on the phase normalization). This sensitivity can be improved by simply increasing
the number of photons. However, this may not be an option in biological measurements, where
the use of high intensity should be avoided, or in the extremely high precision measurements,
where the required optical power is limited by the instabilities and non-linear effects.

Better sensitivity, for the same value of N, could be achieved using more sophisticated quantum
states of light, see e.g. the review [4] and the references therein. The first practical scheme of the
sub-SNL interferometer, which uses Gaussian squeezed states, created by a degenerate optical
parametric amplifier (DOPA), was proposed by Caves in Ref. [5]. Now this idea is implemented
in modern laser gravitational-wave detectors GEO-600 [6], Advanced LIGO [7,8], and Advanced
VIRGO [9].

Typically in high-power high-precision interferometers, e.g. gravitational-wave detectors, one
of the interferometer output ports should be tuned to the dark fringe in order to eliminate the
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technical noise of the laser and to avoid exposing the photodetector to a high optical power.
However, in squeezing-assisted interferometers, this regime limits the range of phases where the
high sensitivity is provided [10], while the optical power limitation could be not so significant in
smaller-scale (table-top) interferometers.

In Refs. [2,4,11,12], differential detection, with the output signal proportional to the difference
of photocurrents of two photodetectors located in both outputs of the interferometer, was
considered. However, as we show here, this scheme also has a limited high-sensitivity range.

In this paper, we consider the most universal approach of combining the two photodetector
outputs with the optimal weight factors. We show that unlike the dark port regime, this method
enables beating the SNL by the same amount regardless of the phase shift in the interferometer
(operating point). At the same time, similar to the dark port regime, it is tolerant to the laser
technical noise.

The sensitivity gain provided by the squeezed light is limited by the optical losses, both
internal (inside the interferometer) and external (absorption in the output path and the detectors
inefficiency). A remedy against the detrimental effect of loss has been proposed by Caves in the
same paper [5] where squeezing-assisted interferometry was introduced. He showed that the
external loss, including the detection inefficiency, can be overcome by amplifying the output
signal by a second DOPA before detection. This phase-sensitive amplifier enhances only the
quadrature carrying the phase information and thus makes it robust to loss, without introducing
additional fundamental noise. This strategy was further analyzed in Ref. [10] and recently
implemented in a proof-of-principle experiment [13]. Here, following this approach, we assume
that both photodetectors could be preceded by the DOPAs in order to suppress the influence of
the photodetectors inefficiency and other external losses.

We base our analysis here on the Mach-Zehnder interferometer topology, but our results could
be trivially extended to the Michelson topology as well.

The resulting setup (see Fig. 1) should not be confused with the non-linear so-called SU(1,1)
interferometers, which also use the optical parametric amplifiers located before and after the
phase shift sources. They measure the phase shift between the parametric pump and the signal
beams, with the parametric amplifiers being the core elements of the interferometer. The SU(2)

Fig. 1. A Mach-Zehnder interferometer with the input degenerate optical parametric
amplifiers DOPA1 (the squeezer) and two output ones DOPA2 and DOPA3. The optical
losses are represented by the imaginary beamsplitters marked by µ and η.
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interferometers measure the phase shift between two arms of the interferometer. In this case the
parametric amplifiers, while playing the key role in overcoming the SNL, do not participate in
the generation of the signal phase shift (see the detailed theory in Ref. [14]).

The paper is organized as follows. In Sec. 2 we derive the input/output equations for this
interferometer and find the optimal squeeze angles for all three parametric amplifiers. In Sec. 3
we calculate the optimized sensitivity of this scheme and compare it with the single-detector and
differential-detection cases. In Sec. 4 we summarize the obtained results.

2. Input/output relations

The specific scheme we consider here is a Mach-Zehnder interferometer with double detection
(Fig. 1), which can be viewed as a straightforward extension of the setup used in Ref. [13].
Here squeezed vacuum from an input degenerate optical parametric amplifier DOPA1 is injected
into one of the input ports of a Mach-Zehnder interferometer. The second port is fed with the
laser radiation. The output signals of the interferometer, which carry the information about the
phase shifts in the interferometer arms ϕ1, ϕ2, are amplified by two additional degenerate optical
parametric amplifiers DOPA2, DOPA3 and measured by two photodetectors. Finally, the two
photocurrents are summed up with the optimal weight factors. In the current paper, we focus
on the case of direct detection, as shown in Fig. 1. However, it can be shown that the double
detection principle can be extended to the double homodyne detection case as well.

In the case of direct detection, the sum of the phases ϕ1 + ϕ2 is irrelevant. Therefore, we can
assume without the generality loss that

ϕ1 = −ϕ2 =
ϕ

2
. (2)

We assume that our interferometer is a symmetric one, with the reflectivity/transmissivity
matrices of both beamsplitters equal to

1
√

2
⎛⎜⎝
1 1

1 −1
⎞⎟⎠ . (3)

We take into account the internal (inside the interferometer) and external (at the interferometer
ouputs, including the photodetectors inefficiency) loss by introducing imaginary beamsplitters
with the power transmissivities, respectively, µ and η, which mix the probing light with the
vacuum noise, see Fig. 1.

In our calculations, we use the formalism of quadrature amplitudes, which are defined, for any
annihilation operator â, as follows [15,16]:

âc =
â + â†
√

2
âs =

â − â†

i
√

2
, (4)

where the superscripts “c” and “s” denote the cosine and sine quadratures, respectively.
We decompose explicitly the incident laser field in the bright input port into the classical

amplitude α =
√

N and the noise part ẑ2:

â2 = α + ẑ2, (5)

where N is the mean number of quanta at this port. We assume without generality loss that α is
real. In this case,

âc
2 =

√
2α + ẑc

2, âs
2 = ẑs

2 . (6)

.
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With an account for this, a straightforward calculation (see e.g. [10]) gives the input/output
relations for the core part of the interferometer (from the first beamsplitter to the second one,
including both of them):

êc
1 = δê

c
1, ês

1 = ⟨ês
1⟩ + δê

s
1, (7a)

êc
2 = ⟨êc

2⟩ + δê
c
2, ês

2 = δê
s
2, (7b)

where
⟨ês

1⟩ =
√︁

2µα sin
ϕ

2
, ⟨êc

2⟩ =
√︁

2µα cos
ϕ

2
(8)

are the classical components (the mean values) of the respective quadratures,

δêc
1 =

√
µ

(︃
âc

1 cos
ϕ

2
− ẑs

2 sin
ϕ

2

)︃
+
√︁

1 − µ m̂c
+, (9a)

δês
1 =

√
µ

(︃
âs

1 cos
ϕ

2
+ ẑc

2 sin
ϕ

2

)︃
+
√︁

1 − µ m̂s
+, (9b)

δêc
2 =

√
µ

(︃
−âs

1 sin
ϕ

2
+ ẑc

2 cos
ϕ

2

)︃
+
√︁

1 − µ m̂c
−, (9c)

δês
2 =

√
µ

(︃
âc

1 sin
ϕ

2
+ ẑs

2 cos
ϕ

2

)︃
+
√︁

1 − µ m̂s
−, (9d)

are the noise components with zero mean values,

m̂c,s
± =

m̂c,s
1 ± m̂c,s

2
√

2
, (10)

and âc,s
1,2, êc,s

1,2, and m̂c,s
1,2 are the quadrature operators of, respectively, the input modes, the output

ones, and the vacuum noise modes associated with the internal losses, see notation in Fig. 1.
It follows from Eqs. (7) that the corresponding photon-number operators are

N̂e1 =
(êc

1)
2 + (ês

1)
2 − 1

2
=

⟨ês
1⟩

2

2
+ ⟨ês

1⟩δê
s
1 + O(α0), (11a)

N̂e2 =
(êc

2)
2 + (ês

2)
2 − 1

2
=

⟨êc
2⟩

2

2
+ ⟨êc

2⟩δê
c
2 + O(α0), (11b)

where we denoted by O(α0) the small (second-order in quantum fluctuations êc,s
1,2) terms that do

not contain α. In real-world high-precision interferometers, where the number of photons is large,
α2 ≫ 1, these terms can be neglected. In this approximation, the contributions of quadratures êc

1
and ês

2 (which consist of the noise terms only and do not depend on α) vanish, giving

N̂e1 =
⟨ês

1⟩
2

2
+ ⟨ês

1⟩δê
s
1, (12a)

N̂e2 =
⟨êc

2⟩
2

2
+ ⟨êc

2⟩δê
c
2 . (12b)

Two conclusions follow from this consideration. First, the quadratures ês
1 and êc

2, which remain
in (12), should be amplified by the output DOPAs to increase the signal. Second, the sine
quadrature âs

1, which appears in Eqs. (9b, 9c), should be squeezed by the input DOPA. This
corresponds to the same phases of the pumps of the input DOPA and the second output DOPA,
and to the opposite phase of the first output DOPA. Note that these settings do not depend on ϕ.
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Taking these assumptions into account, we obtain the following equations for the quadratures
ĝs

1, ĝc
2 of the effective fields at the photodetectors (with an account for the output losses and the

detectors inefficiencies):

ĝs
1 =

√
ηês

1er2 +
√︁

1 − η n̂s
1 = ⟨ĝs

1⟩ + δĝ
s
1, (13a)

ĝc
2 =

√
ηêc

2er2 +
√︁

1 − η n̂c
2 = ⟨ĝc

2⟩ + δĝ
c
2, (13b)

(note that it is these quadratures that contain the signal and appear in Eqs. (16) below). Here,

⟨ĝs
1⟩ =

√
η⟨ês

1⟩e
r2 , ⟨ĝc

2, ⟩ =
√
η⟨êc

2⟩e
r2 (14)

are the regular parts of ĝs
1, ĝc

2,

δĝs
1 =

√
η δês

1er2 +
√︁

1 − η n̂s
1, (15a)

δĝc
2 =

√
η δêc

2er2 +
√︁

1 − η n̂c
2 (15b)

are the noise parts, and n̂s
1, n̂c

2 are the quadratures of the vacuum modes associated with the output
losses.

3. Phase sensitivity

It follows from Eqs. (14, 15) that the effective (accounting for the detectors inefficiency) numbers
of detected photons are

N̂1 =
(ĝs

1)
2

2
= ⟨N̂1⟩ + δN̂1, N̂2 =

(ĝc
2)

2

2
= ⟨N̂2⟩ + δN̂2, (16)

where

⟨N̂1⟩ =
⟨ĝs

1⟩
2

2
, ⟨N̂2⟩ =

⟨ĝc
2⟩

2

2
, (17)

and
δN̂1 = ⟨ĝs

1⟩δĝ
s
1, δN̂2 = ⟨ĝc

2⟩δĝ
c
2 (18)

are the corresponding regular and noise parts.
The explicit expressions for the mean numbers of quanta ⟨N̂1,2⟩, their variances ⟨(δN̂1,2)

2⟩, the
covariance ⟨δN̂1δN̂2⟩, and the corresponding values ⟨N̂±⟩, ⟨(δN̂±)

2⟩, ⟨δN̂+δN̂−⟩ for the sum and
difference of N̂1,2

N̂± = N̂1 ± N̂2 : (19)

are calculated in the Appendix A. The following uncertainties of all relevant input quadratures
are assumed:

⟨(âs
1)

2⟩ =
e−2r1

2
, (20a)

⟨(ẑc
2)

2⟩ =
A

2
, (20b)

⟨(m̂s
+)

2⟩ = ⟨(m̂c
−)

2⟩ = ⟨(n̂s
1)

2⟩ = ⟨(n̂c
2)

2⟩ =
1
2

. (20c)

The factor
A = N(g(2) − 1) + 1>1 (21)

in Eq. (20b), where g(2) is the degree of second-order coherence, takes into account the contribution
from the technical (super-Poissonian) noise of the laser light.
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In order to calculate the phase measurment uncertainty, we will use the standard error-
propagation formula:

(∆ϕ)2 =
⟨(δÔ)2⟩(︃
∂⟨Ô⟩

∂ϕ

)︃2 , (22)

where O is the measured quantity.
Consider now three different strategies of the phase measurement.
Single detector. The simplest approach is to use just one output, for example the first one:

Ô = N̂1 . (23)

In this case, Eqs. (47, 48a) give

(∆ϕ)2 = (∆ϕmin)
2 + K tan2 ϕ

2
, (24)

where

∆ϕmin =

√︃
e−2r1 + ϵ2

N
(25)

is the best sensitivity achieved at ϕ = 0,

K =
A + ϵ2

N
(26)

is the factor describing the sensitivity deterioration with the increase of ϕ, and

ϵ2 =
1 − µ

µ
+

1 − η

µη
e−2r2 (27)

is the overall quantum inefficiency of the interferometer, compare with Eqs. (5–7) of Ref. [10].
The factor K defines the range of the phases where the sensitivity is close to ∆ϕmin. It follows

from Eq. (24) that the full width at half minimum (FWHM) of this range is

∆FWHM = 4 arctan
∆ϕmin
√

K
= 4 arctan

√︄
e−2r1 + ϵ2

A + ϵ2
. (28)

It is easy to see that the better the sensitivity, the more narrow the range where it can be
achieved. In the most interesting high-sensitivity case of

e−2r1 ≪ 1, ϵ2 ≪ 1 ⇒ ∆ϕmin ≪ ∆ϕSNL, (29)

this dependence can be expressed as follows:

∆FWHM ≈
4

√
A

∆ϕmin
∆ϕSNL

. (30)

Differential detection. The second possible strategy is to measure the difference of the photon
numbers:

Ô = N̂− . (31)
It could be justified by the fact that the sum number of quanta N̂+ does not depend on ϕ, see

Eq. (49). In this case it follows from Eqs. (49, 50b) that

(∆ϕ)2 = (∆ϕmin)
2 + K cot2 ϕ . (32)

Comparison of this result with Eq. (24) shows that this strategy is not better than the simplest
single-detection one, providing the same peak sensitivity and twice as narrow FWHM range
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repeated twice in the same phase range 2π:

∆FWHM = 2 arctan
∆ϕmin
√

K
= 2 arctan

√︄
e−2r1 + ϵ2

A + ϵ2
, (33)

or, in the case of ∆ϕmin ≪ 1,
∆FWHM ≈

2
√
A

∆ϕmin
∆ϕSNL

. (34)

Optimal combination of two output signals. The best result can be obtained by combining
both outputs with some optimized weight factor, which we denote as k ± 1:

Ô = N̂k = (k + 1)N̂1 + (k − 1)N̂2 = N̂− + kN̂+ . (35)

Taking into account that N̂+ does not depend on ϕ, the phase measurement error in this case is

(∆ϕ)2 =
⟨(δN̂k⟩)

2(︃
∂⟨N̂−⟩

∂ϕ

)︃2 . (36)

Therefore, the value of k that minimizes ⟨(δN̂k)
2⟩ provides also the best phase sensitivity. It

follows from Eqs. (49–51) that the optimal value of k and the corresponding value of ∆ϕ are

kopt = −
⟨δN̂+δN̂−⟩

⟨(δN+)2⟩
= cos ϕ, (37)

and
∆ϕ = ∆ϕmin, (38)

compare with Eqs. (24, 32). Thus, the optimal strategy (37) gives a completely flat (independent
on ϕ) value of ∆ϕ.

At the same time, it creates the “vicious circle”: the factor k depends on ϕ, which itself is the
result of the measurement. Therefore, consider the suboptimal strategy, which uses the following
value of k:

ksubopt = cos ϕapr, (39)
where ϕapr is the a priori mean value of ϕ. It follows from Eqs. (49, 51) that in this case,

(∆ϕ)2 = (∆ϕmin)
2 + K

(cos ϕ − cos ϕapr)
2

sin2 ϕ
. (40)

It follows from this equation that in order to obtain good phase sensitivity, ∆ϕ ≪ 1, the
deviation of ϕapr from the real ϕ also has to be small,

∆ϕapr =
√︂
⟨(ϕapr − ϕ)2⟩ ≪ 1 . (41)

However, actually this limitation is rather mild. Indeed, in the case of (41), Eq. (40) can be
simplified as follows:

(∆ϕ)2 = (∆ϕmin)
2 + K(∆ϕapr)

2 . (42)
Therefore, modest a priori knowledge of ϕ, corresponding to

∆ϕapr ≲

√︄
e−2r1 + ϵ2

A + ϵ2
, (43)

allows one to obtain a sensitivity close to the optimal one (38) for all values of ϕ. Note that the
R.H.S. of the above equation does not contain N and therefore could be much larger than, for
example, ∆ϕSNL.
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In Fig 2, the phase measurement uncertainties for the considered strategies (24, 32, 38) are
plotted as functions of ϕ.

Fig. 2. Normalized phase sensitivity for the three considered measurement strategies. Solid
lines: ϵ = 0, A = 1; dashed lines: ϵ = 0.2, A = 1; dotted lines: ϵ = 0, A = 2. In all cases,
10 dB of the input squeezing is assumed, e2r1 = 10. (The values of ϵ and A are chosen with
the goal to make clear their influence on the sensitivity).

4. Conclusion

We have analyzed the sensitivity of a Mach-Zehnder interferometer with a squeezed vacuum
injected into one of the input ports and the parametric amplification of both output signals,
taking into account the optical losses and the detectors inefficiency. We compared three
possible strategies of the measurement: (i) measurement of the number of photons at one of the
interferometer outputs; (ii) measurement of the difference of photon numbers at both outputs, and
(iii) optimal combination of the numbers of photons measured at the two outputs. We showed
that while the first two strategies limit the range of phases where the high sensitivity could be
achieved, the third one allows to beat the SNL by the same amount for all values of the phase
ϕ, assuming some modest a priori information on ϕ. In particular, this information could be
acquired using a preliminary low-precision [see Eq. (43)] “ranging” measurement. These results
hold independently on whether the output parametric amplification is used or not. However, in
all three cases, they allow to suppress the influence of the detectors inefficiency.

It has to be emphasized that the measurement of the photon numbers at both outputs gives the
information about the laser intensity noise (which, in linear approximation, is equivalent to the
intensity stabilization), allowing to suppress its effect on the measurement precision (note that
the factor A does not appear in Eq. (38)).

In principle, the DOPAs, both input and output ones, could introduce various non-fundamental
imperfections and noise sources into the scheme. The detailed analysis of these effects exceed
the framework of the current paper. However, the successful implementation of the squeezing in
the GW detectors, as well as the recent demonstration of the sensitivity gain due to the output
DOPA [13] show that these problems could be surmounted (see also the brief analysis of the
DOPAs losses, which supports this conclusion, in Ref. [17]).

With a broadened range of high phase sensitivity, squeezing-assisted interferometers can
improve the performance of many techniques where they have not been used so far. This is,
first of all, Fourier-transform infrared (FTIR) spectroscopy, where the phase has to be scanned
over ranges exceeding 2π. Also, measurements of refractive index, used in various fields from
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aerodynamics to environmental gas sensing, are based on the phase shifts in a Mach-Zehnder
interferometer and will benefit from broadening its high-sensitivity range.

A. The photocounting statistics

It follows from Eqs. (14, 20), that

⟨gs
1⟩ =

√
2 Gα sin

ϕ

2
, ⟨gc

2⟩ =
√

2 Gα cos
ϕ

2
, (44)

⟨(δĝs
1)

2⟩ =
G2

2

(︃
e−2r1 cos2 ϕ

2
+A sin2 ϕ

2
+ ϵ2

)︃
, (45a)

⟨(δĝc
2)

2⟩ =
G2

2

(︃
e−2r1 sin2 ϕ

2
+A cos2 ϕ

2
+ ϵ2

)︃
, (45b)

⟨δĝs
1 δĝ

c
2⟩ =

G2

4
(−e−2r1 +A) sin ϕ, (45c)

where
G =

√
µη er2 (46)

is the amplitude transfer function of the setup and ϵ2 is given by (27). Therefore, with account of
Eqs. (17, 18),

⟨N̂1⟩ = G2α2 sin2 ϕ

2
, ⟨N̂2⟩ = G2α2 cos2 ϕ

2
, (47)

⟨(δN̂1)
2⟩ = G4α2 sin2 ϕ

2

(︃
e−2r1 cos2 ϕ

2
+A sin2 ϕ

2
+ ϵ2

)︃
, (48a)

⟨(δN̂2)
2⟩ = G4α2 cos2 ϕ

2

(︃
e−2r1 sin2 ϕ

2
+A cos2 ϕ

2
+ ϵ2

)︃
, (48b)

⟨δN̂1 δN̂2⟩ =
G4α2

4
(−e−2r1 +A) sin2 ϕ (48c)

and
⟨N̂+⟩ = G2α2, ⟨N̂−⟩ = −G2α2 cos ϕ, (49)

⟨(δN̂+)2⟩ = ⟨(δN̂1)
2⟩ + ⟨(δN̂2)

2⟩ + 2⟨δN̂1 δN̂2⟩ = G4α2(A + ϵ2), (50a)

⟨(δN̂−)
2⟩ = ⟨(δN̂1)

2⟩ + ⟨(δN̂2)
2⟩ − 2⟨δN̂1 δN̂2⟩ = G4α2(e−2r1 sin2 ϕ +A cos2 ϕ + ϵ2), (50b)

⟨δN̂+δN̂−⟩ = ⟨(δN̂1)
2⟩ − ⟨(δN̂2)

2⟩ = −G4α2(A + ϵ2) cos ϕ, (50c)

⟨(δN̂k)
2⟩ = ⟨(δN̂−)

2⟩ + 2⟨δN̂+δN̂−⟩ cos ϕapr + ⟨(δN̂+)2⟩ cos2 ϕapr

= G4α2[(e−2r1 + ϵ2) sin2 ϕ + (A + ϵ2)(cos ϕ − cos ϕapr)
2.

(51)
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