3,952 research outputs found

    Multidimensional Binary Vector Assignment problem: standard, structural and above guarantee parameterizations

    Full text link
    In this article we focus on the parameterized complexity of the Multidimensional Binary Vector Assignment problem (called \BVA). An input of this problem is defined by mm disjoint sets V1,V2,,VmV^1, V^2, \dots, V^m, each composed of nn binary vectors of size pp. An output is a set of nn disjoint mm-tuples of vectors, where each mm-tuple is obtained by picking one vector from each set ViV^i. To each mm-tuple we associate a pp dimensional vector by applying the bit-wise AND operation on the mm vectors of the tuple. The objective is to minimize the total number of zeros in these nn vectors. mBVA can be seen as a variant of multidimensional matching where hyperedges are implicitly locally encoded via labels attached to vertices, but was originally introduced in the context of integrated circuit manufacturing. We provide for this problem FPT algorithms and negative results (ETHETH-based results, WW[2]-hardness and a kernel lower bound) according to several parameters: the standard parameter kk i.e. the total number of zeros), as well as two parameters above some guaranteed values.Comment: 16 pages, 6 figure

    A rare case of Cystic artery arising from Gastroduodenal artery

    Get PDF
    An uncommon anatomical variation in the origin and course of cystic artery was found during human cadaveric dissection in our laboratory. A blood vessel was seen arising from the gastroduodenal artery about 1 cm distal to its origin from the common hepatic artery. The vessel when traced towards its termination was found to be cystic artery and was supplying the peritoneal surface of the gall bladder. The visceral surface of the gall bladder was receiving its blood supply by fine twigs from the right hepatic artery. The tortuous cystic artery arose outside hepatobiliary triangle, crossed the common bile duct anteriorly and was lying anterior to the cystic duct hiding it from view. On reaching the neck of gall bladder, it again travelled for short distance before its termination. The non-peritonealised surface of the gall bladder was receiving its blood supply by fine twigs from the right hepatic artery in the gall bladder fossa. The knowledge of this rare variant will aid surgeons to avoid accidental haemorrhage during surgery in and around the hepatobiliary triangle.Keywords: Cystic artery, Gastroduodenal arter

    Tunable temperature induced magnetization jump in a GdVO3 single crystal

    Full text link
    We report a novel feature of the temperature induced magnetization jump observed along the a-axis of the GdVO3 single crystal at temperature TM = 0.8 K. Below TM, the compound shows no coercivity and remanent magnetization indicating a homogenous antiferromagnetic structure. However, we will demonstrate that the magnetic state below TM is indeed history dependent and it shows up in different jumps in the magnetization only when warming the sample through TM. Such a magnetic memory effect is highly unusual and suggesting different domain arrangements in the supposedly homogenous antiferromagnetic phase of the compound.Comment: 17 pages, 8 Figure

    HIV/AIDS, Security and Conflict: New Realities, New Responses

    Get PDF
    Ten years after the HIV/AIDS epidemic itself was identified as a threat to international peace and security, findings from the three-year AIDS, Security and Conflict Initiative (ASCI)(1) present evidence of the mutually reinforcing dynamics linking HIV/AIDS, conflict and security

    Coal pump development phase 3

    Get PDF
    Techniques for achieving continuous coal sprays were studied. Coazial injection with gas and pressure atomization were studied. Coal particles, upon cooling, were found to be porous and fragile. Reactivity tests on the extruded coal showed overall conversion to gases and liquids unchanged from that of the raw coal. The potentials for applications of the coal pump to eight coal conversion processes were examined

    Direct simulations of helical Hall-MHD turbulence and dynamo action

    Get PDF
    Direct numerical simulations of turbulent Hall dynamos are presented. The evolution of an initially weak and small scale magnetic field in a system maintained in a stationary turbulent regime by a stirring force at a macroscopic scale is studied to explore the conditions for exponential growth of the magnetic energy. Scaling of the dynamo efficiency with the Reynolds numbers is studied, and the resulting total energy spectra are found to be compatible with a Kolmogorov type law. A faster growth of large scale magnetic fields is observed at intermediate intensities of the Hall effect.Comment: 13 pages, 17 figures, ApJ (in press

    Quantum Monte Carlo study of a nonmagnetic impurity in the two-dimensional Hubbard model

    Full text link
    In order to investigate the effects of nonmagnetic impurities in strongly correlated systems, Quantum Monte Carlo (QMC) simulations have been carried out for the doped two-dimensional Hubbard model with one nonmagnetic impurity. Using a bare impurity potential which is onsite and attractive, magnetic and single-particle properties have been calculated. The QMC results show that giant oscillations develop in the Knight shift response around the impurity site due to the short-range antiferromagnetic correlations. These results are useful for interpreting the NMR data on Li and Zn substituted layered cuprates.Comment: 10 pages, 7 figure

    Rebounce and Black hole formation in a Gravitational Collapse Model with Vanishing Radial Pressure

    Full text link
    We examine spherical gravitational collapse of a matter model with vanishing radial pressure and non-zero tangential pressure. It is seen analytically that the collapsing cloud either forms a black hole or disperses depending on values of the initial parameters which are initial density, tangential pressure and velocity profile of the cloud. A threshold of black hole formation is observed near which a scaling relation is obtained for the mass of black hole, assuming initial profiles to be smooth. The similarities in the behaviour of this model at the onset of black hole formation with that of numerical critical behaviour in other collapse models are indicated.Comment: 15 pages, To be published in Gen.Rel.Gra

    Swirling astrophysical flows - efficient amplifiers of Alfven waves

    Full text link
    We show that a helical shear flow of a magnetized plasma may serve as an efficient amplifier of Alfven waves. We find that even when the flow is purely ejectional (i.e., when no rotation is present) Alfven waves are amplified through the transient, shear-induced, algebraic amplification process. Series of transient amplifications, taking place sequentially along the flow, may result in a cascade amplification of these waves. However, when a flow is swirling or helical (i.e., some rotation is imposed on the plasma motion), Alfven waves become subject to new, much more powerful shear instabilities. In this case, depending on the type of differential rotation, both usual and parametric instabilities may appear. We claim that these phenomena may lead to the generation of large amplitude Alfven waves and the mechanism may account for the appearance of such waves in the solar atmosphere, in accretion-ejecion flows and in accretion columns. These processes may also serve as an important initial (linear and nonmodal) phase in the ultimate subcritical transition to MHD Alfvenic turbulence in various kinds of astrophysical shear flows.Comment: 12 pages, 11 figures, accepted for publication (25-11-02) in Astronomy and Astrophysic

    Effect of Nonmagnetic Impurity in Nearly Antiferromagnetic Fermi Liquid: Magnetic Correlations and Transport Phenomena

    Full text link
    In nearly antiferromagnetic (AF) metals such as high-Tc superconductors (HTSC's), a single nonmagnetic impurity frequently causes nontrivial widespread change of the electronic states. To elucidate this long-standing issue, we study a Hubbard model with a strong onsite impurity potential based on an improved fluctuation-exchange (FLEX) approximation, which we call the GV^I-FLEX method. This model corresponds to the HTSC with dilute nonmagnetic impurity concentration. We find that (i) both local and staggered susceptibilities are strongly enhanced around the impurity. By this reason, (ii) the quasiparticle lifetime as well as the local density of states (DOS) are strongly suppressed in a wide area around the impurity (like a Swiss cheese hole), which causes the ``huge residual resistivity'' beyond the s-wave unitary scattering limit. We stress that the excess quasiparticle damping rate caused by impurities has strong momentum-dependence due to non-s-wave scatterings induced by many-body effects, so the structure of the ``hot spot/cold spot'' in the host system persists against impurity doping. This result could be examined by the ARPES measurements. In addition, (iii) only a few percent of impurities can causes a ``Kondo-like'' upturn of resistivity (dρ/dT<0d\rho/dT<0) at low temperatures when the system is very close to the AF quantum critical point (QCP). The results (i)-(iii) obtained in the present study, which cannot be derived by the simple FLEX approximation, naturally explains the main impurity effects in HTSC's. We also discuss the impurity effect in heavy fermion systems and organic superconductors.Comment: 22 pages, to be published in PR
    corecore