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ABSTRACT
Direct numerical simulations of turbulent Hall dynamos arepresented. The evolution of an initially

weak and small scale magnetic field in a system maintained in astationary turbulent regime by a stirring
force at a macroscopic scale is studied to explore the conditions for exponential growth of the magnetic
energy. Scaling of the dynamo efficiency with the Reynolds numbers is studied, and the resulting total
energy spectra are found to be compatible with a Kolmogorov type law. A faster growth of large scale
magnetic fields is observed at intermediate intensities of the Hall effect.

Subject headings:MHD — magnetic fields — stars: magnetic fields — stars: neutron— accretion disks

1. INTRODUCTION

In recent years, the relevance of two-fluid effects
has been pointed out in several astrophysical (Bal-
bus & Terquem 2001; Sano & Stone 2002; Mininni,
Gómez, & Mahajan 2002, 2003a) as well as labora-
tory plasmas (Mirnov, Hegna, & Prager 2003). The
standard magnetohydrodynamic (MHD) framework
for the study of astrophysical plasmas may not be ade-
quate in the presence of strong magnetic fields and/or
low ionization; the electric conductivity then is not
isotropic and nonlinear effects arise in Ohm’s law. In
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Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428
Buenos Aires, Argentina.

2also at Instituto de Astronomı́a y Fı́sica del Espacio, Ciudad
Universitaria, 1428 Buenos Aires, Argentina.

low temperature accretion disks around young stellar
objects or in dwarf nova systems in quiescence, for
example, the plasma is only partially ionized with a
small abundance of charged particles. As a result, two
new effects appear in Ohms’s law: ambipolar diffusion
and Hall currents. The predominance of either of these
effects is determined by the ionization fraction and the
plasma density (Sano & Stone 2002; Braginskii 1965).
The impact of ambipolar diffusion on dynamo action
has been already studied by Zweibel (1988) (see also
Brandenburg & Subramanian (2000)). The Hall effect
affects the dynamics of protostellar disks (Balbus &
Terquem 2001). In neutron stars magnetic fields are so
strong that the Hall term can be even more important
than the induction term for the magnetic field evolu-
tion (Muslimov 1994). The Hall effect is also known
to be relevant in others astrophysical scenarios (Sano
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& Stone 2002; Mininni, Gómez, & Mahajan 2003b,
and references therein).

The Hall effect, when strong, is expected to seri-
ously affect the MHD results on the generation of mag-
netic fields in astrophysical and laboratory plasmas by
inductive motions in a conducting fluid (dynamo ef-
fect). More specifically, it is expected to modify the
growth and evolution of magnetic energy, since the ad-
dition of the Hall term to the MHD equations leads
to the freezing of the magnetic field to the electron
flow (in the non-dissipative limit) rather than to the
bulk velocity field. The first studies on the impact of
Hall currents on dynamo action (Helmis 1968; Helmis
1971) were carried out using mean field theory and the
first-order smoothing approximation (Krause & Rädler
1980). Helmis obtained decreasing dynamo action as
the strength of the Hall terms increased. Recently,
the impact of the Hall effect has been studied using
the kinematic approximation or focusing on particu-
lar geometries, both in numerical simulations (Galanti,
Kleeorin, & Rogachevskii 1994) and in experimen-
tal and theoretical studies (Heintzmann 1983; Ji 1999;
Rheinhardt & Geppert 2002; Mirnov, Hegna, & Prager
2003). A general closure scheme was also proposed
to compute the contribution of the Hall term to the
dynamo actionα-effect (Mininni, Gómez, & Mahajan
2002) using mean field theory and the reduced smooth-
ing approximation (Blackman & Field 1999); it was
found that the Hall effect could either suppress or en-
hance dynamo action. Expressions for the turbulent
diffusivity using this closure were also derived for par-
ticular cases in Mininni, Gómez, & Mahajan (2003a).

In the present work, we report results from di-
rect numerical simulations of the dynamo action in
MHD and Hall-MHD at moderate Reynolds num-
bers with strong kinetic helical forcing. The study
of the scaling of the dynamo efficiency with increas-
ing Reynolds numbers is the main aim of this pa-
per. In a previous paper (Mininni, Gómez, & Ma-
hajan 2003b), we showed that three distinct dynamo
regimes can be clearly identified: (1) dynamo ac-
tivity is enhanced (Hall-enhanced regime), (2) it is
inhibited (Hall-suppressed regime), (3) it asymptot-
ically approaches the MHD value (MHD regime).
These regimes arise as a result of the relative order-
ing between the relevant lengthscales of the problem.
Namely, the energy-containing scale of the flow, the
Hall length, and the correlation length of the mag-
netic seed. Simulations in Mininni, Gómez, & Ma-
hajan (2003b) were performed with643 spatial grid

points and fixed Reynolds numbers. This study left
unanswered the question whether the enhancement of
dynamo action by Hall effect would increase or de-
crease with increasing Reynolds numbers and scale
separation.

Theoretical estimates using mean field theory and
a particular choice for the small scale fields suggest
that the efficiency of Hall-MHD dynamos compared
with the MHD counterpart will increase as the scale
separation is increased (Mininni, Gómez, & Mahajan
2002). In this work we present direct simulations with
higher spatial resolutions and Reynold numbers that
confirm this result. Also, the magnetic, kinetic, and
total energy spectra developed in Hall-MHD turbu-
lence are calculated and studied. These spectra corre-
spond to the dynamo regime, where no imposed cur-
rents are present, i.e, the magnetic fields are purely
self-generated. This regime is rather general and prob-
ably common to most astrophysical flows (Haugen,
Brandenburg & Dobler 2004).

The paper is organized as follows. In Section 2
we present the general equations describing the evo-
lution of the fields. In Section 3, the code used to nu-
merically integrate the Hall-MHD system is described,
and all the simulations made with different resolu-
tions and parameters are listed. Section 4 presents the
results obtained in the MHD limit of our equations;
the results obtained are similar to those of other au-
thors (Meneguzzi, Frisch, & Pouquet 1981; Branden-
burg 2001), and provide a reference set to compare
the Hall-MHD solutions with. Section 5 is devoted to
the results of Hall-MHD simulations. In Section 6 we
discuss a subset of MHD and Hall-MHD simulations
made to study the evolution of large scale magnetic
fields. Finally, in Section 7, we give a brief summary
of the current effort.

2. THE HALL-MHD SYSTEM

Incompressible Hall-MHD is described by the mod-
ified induction and the dissipative Navier-Stokes equa-
tion,

∂B

∂t
= ∇× [(U − ǫ∇×B)×B] + η∇2

B(1)

∂U

∂t
= − (U · ∇)U + (B · ∇)B −

−∇

(
P +

B2

2

)
+ F + ν∇2

U (2)

∇ · B = 0 = ∇ · U , (3)
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whereF denotes a solenoidal external force. The ve-
locity U and the magnetic fieldB are expressed in
units of a characteristic speedU0, ǫ measures the rela-
tive strength of the Hall effect, andη andν are the (di-
mensionless) magnetic diffusivity and kinematic vis-
cosity, respectively. Note that the measure of Hall ef-
fect ǫ can be written as

ǫ =
LHall

L0

, (4)

whereL0 is a characteristic length scale (the size of
the box in our simulations is equal to2π), and the Hall
length

LHall =
c

ωpi

UA

U0

, (5)

is given in terms of the characteristic speedU0 and the
characteristic Alfvénic speedUA. In particular, we are
free to chooseU0 = UA as our characteristic velocity,
reducingLHall to the ion skin depth.

Equation (5) is valid in a fully ionized plasma. We
will work under this assumption without any loss of
generality. In the more general case of partially ion-
ized plasmas, the values ofLHall andǫ are those re-
ported by Sano & Stone (2002), or in Mininni, Gómez,
& Mahajan (2003b). Typical values ofǫ in astro-
physics are also mentioned in these papers.

To keep in mind astrophysical scenarios, we just
recall three examples. In a protostellar disk the Hall
scale is larger than the dissipation scale typically by
two orders of magnitude, but smaller than the largest
scales of the system (Balbus & Terquem 2001). There-
fore we expectǫ < 1 but with LHall larger than the
dissipation scale. In some dwarf nova disks and proto-
planetary disksǫ ≈ 1 (Sano & Stone 2002). As pre-
viously mentioned, in neutron starsǫ > 1 (Muslimov
1994).

The Hall-MHD system has three well-known ideal
(η = ν = 0) quadratic invariants

E =
1

2

∫
(U2 + B2) dV , (6)

Hm =
1

2

∫
A · B dV , (7)

K =
1

2

∫
(B + ǫω) · (A + ǫU) dV . (8)

HereE is the energy,Hm is the magnetic helicity, and
K is the hybrid helicity, which replaces the cross helic-
ity from magnetohydrodynamics. The vector potential
A is defined byB = ∇× A, andω = ∇× U is the

vorticity. Conservation of these ideal invariants during
the evolution of the system provides a check on the
simulation.

3. THE CODE

The pseudospectral code used in Mininni, Gómez,
& Mahajan (2003b) was modified to run in a Beowulf
cluster using MPI. We integrated the Hall-MHD equa-
tions (1)-(3) in a cubic box with periodic boundary
conditions. The equations were evolved in time using a
second order Runge-Kutta method. The total pressure
PT = P + B2/2 was computed in a self-consistent
fashion at each time step to ensure the incompressibil-
ity condition∇·U = 0 (Canuto, Hussaini, Quarteroni,
& Zang 1998). In Fourier space, taking the divergence
of equation (2) we obtain

P̂T (k) =
i

k2
k ·

[
̂(U · ∇U)k − ̂(B · ∇B)k

]
, (9)

where the hat denotes a spatial Fourier transform, and
k is the wavenumber vector.

To satisfy the divergence-free condition for the
magnetic field, the induction equation (1) was replaced
by an equation for the vector potential

∂A

∂t
= (U − ǫ∇× B)×B + ǫ∇pe + η∇2

A , (10)

wherepe (electron pressure) was computed at each
time step to satisfy the Coulomb gauge∇ · A = 0,
solving an equation similar to equation (9).

We present results from different runs withη =
0.05, η = 0.02, andη = 0.011. For the first value ofη,
simulations with643 and1283 spatial grid points were
performed to check convergence. The rest of the sim-
ulations were made with1283 grid points (η = 0.02),
and2563 grid points (η = 0.011). All the runs were
made with magnetic Prandtl numberν/η = 1. There-
fore, hereafter we will only consider a single Reynolds
number (i.e. both kinetic and magnetic), defined as

R =
UL0

η
, (11)

In the study of turbulent flows, the number

Rλ =
Uλ

η
, (12)

constructed from Taylor’s length scale [λ = (
〈
U2

〉
/

〈
ω2

〉
)1/2]

is often considered. Note that this definition of
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Taylor’s micro-scale might differ from other defini-
tions (for instance, in connection with experiments
on fluid turbulence) in factors of order unity (Pope
2000). These two Reynolds numbers were respec-
tively R ≈ 100 andRλ ≈ 20 for the first value ofν
andη, R ≈ 300 andRλ ≈ 40 for the second one, and
R ≈ 560 andRλ ≈ 60 in the last case. The energy
injection rate was approximately the same for all these
runs.

The simulation begins by subjecting the Navier-
Stokes equation to a stationary helical forceF (given
by eigenfunctions of the curl operator) operating at
a macroscopic scalekforce = 3 (Mininni, Gómez,
& Mahajan 2003b) to reach a hydrodynamic turbu-
lent steady state. The resulting statistically steady
state is characterized by a positive kinetic helic-
ity. The relative helicity in runs withR = 300 is
2 Hk/(

〈
U2

〉 〈
ω2

〉
)1/2 ≈ 0.4, and this value decreases

slightly for larger Reynolds numbers. The kinetic he-
licity is defined as

Hk =
1

2

∫
U · ω dV . (13)

Once the hydrodynamic stage of the simulation
reaches a steady state, a non-helical but small magnetic
seed was introduced. This initial magnetic seed was
generated by aδ-correlated vector potential centered at
kseed = 13 for theR = 100 runs andkseed = 35 for
theR = 300 andR = 560 simulations. The run was
continued with the same external helical force in the
Navier-Stokes equation, to study the growth of mag-
netic energy due to dynamo action.

Another set of simulations was made under the
same conditions but withν = η = 0.02 andkforce =
10 (1283 grid points), to study the changes in the
growth of the large scale magnetic field in the presence
of the Hall effect. In this case the Reynolds numbers
are smaller (R ≈ 220 andRλ ≈ 20), and the turbu-
lence is weaker, since there are not enough modes in
Fourier space for a direct cascade to develop properly.
On the other hand, there are more Fourier modes to
study the inverse cascade and the growth of large scale
fields. The results of these simulations are discussed
in Section 6.

In all our simulations the Kolmogorov’s kinetic and
magnetic dissipation length scales were properly re-
solved in the computational domain, i.e. we made sure
that the dissipation wavenumbers remain smaller than
the maximum wavenumber allowed by the dealiasing
step, namelykmax = 128/3.

4. MHD DYNAMOS

In this section we briefly present the results from
MHD simulations. The results are in good agree-
ment with previous simulations of dynamo action un-
der periodic boundary conditions (Meneguzzi, Frisch,
& Pouquet 1981; Brandenburg 2001). These simula-
tions are intended for comparison with the Hall-MHD
runs, and therefore some specific results of the MHD
simulations are discussed in more detail in the follow-
ing sub-sections.

4.1. Magnetic energy evolution

In Figure 1, we show the magnetic and kinetic en-
ergy as a function of time in MHD runs (ǫ = 0) for
different Reynolds numbers. The turnover time for

R = 300 is τ = 2π/(kforce

〈
U2

〉1/2
) ≈ 0.3.

Two phases can be clearly identified in the evolu-
tion of the magnetic energy. After a first stage with
exponential growth (which can be considered as the
kinematic dynamo stage), the magnetic energy satu-
rates and reaches equipartition with the kinetic energy
(see Figure 1). In the first stage, the magnetic energy is
still weak and the velocity field is not strongly affected
by the Lorentz force. Note that during this exponential
growth of magnetic energy, the kinetic energy remains
approximately constant.

This kinematic dynamo stage can be understood at
least qualitatively considering the mean field induction
equation (Krause & Rädler 1980)

∂B

∂t
= ∇×

(
U×B + αB

)
+ ηeff∇

2
B. (14)

Here the overline denotes mean field quantities, and

Fig. 1.— Kinetic energyEk (above), and magnetic
energyEm (below) as a function of time (ǫ = 0).
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ηeff is the magnetic plus turbulent diffusivity. The
MHD α-effect (Pouquet, Frisch, & Leorat 1976)

α =
τ

3

(
−u · ∇×u + b · ∇×b

)
, (15)

represents the back-reaction of the turbulent motions
in the mean field, and gives exponential growth of
magnetic energy in the kinematic regime for helical
turbulence. Hereu and b are respectively the fluc-
tuating velocity and magnetic fields, andτ is a typ-
ical correlation time for the turbulent motions. At-
tempts to measure this quantity in direct simulations
were made by Cattaneo & Hughes (1996), and Bran-
denburg (2001).

As the Reynolds number increases, the saturation
field strength increases, although it seems to reach an
asymptotic value. After the saturation, the magnetic
energy keeps growing slowly on a resistive timescale
(Brandenburg 2001). This late growth takes place
mainly at large scales, as will be shown in the energy
spectrum. As far as we know, there are no simulations
of MHD dynamos with periodic boundary conditions
showing generation of large scale fields on shorter
times.

4.2. Energy spectrum

Figure 2 shows the kinetic and magnetic spectra
at different times for a run withR = 300. In the
early stages the magnetic energy grows uniformly at
all wave numbers. After the saturation (t ≈ 5) the
emergence of a large-scale field can be clearly seen
in the spectrum. Att ≈ 18.4, when the system has
already reached equipartition (see Figure 1), the mag-
netic energy at large scales (small wave numbers) still
keeps growing, albeit slowly. As a result, the large
scale magnetic field reaches super-equipartition with
the kinetic energy. An excess of magnetic energy can
be also observed at small scales.

The slope of the total (magnetic and kinetic) energy
spectrum in the inertial range is consistent with Kol-
mogorov’sk−5/3 law and in good agreement with sim-
ulations of helical MHD turbulence with higher spatial
resolutions. Kida, Yanase, & Mizushima (1991) found
that the total energy spectrum in MHD dynamo simu-
lations is of the form

E(k) = CKε2/3k−5/3, (16)

whereε is the total dissipation rate, andCK is a Kol-
mogorov’s constant. Simulations at higher spatial res-
olutions (Haugen, Brandenburg & Dobler 2003) seem

to confirm this result although in some cases the spec-
trum tends to be a little shallower.

4.3. Magnetic helicity

The magnetic helicityHm is displayed in Figure
3. The initial magnetic field is non-helical, but during
the dynamo process net magnetic helicity is generated
with a sign opposite to that of the kinetic helicity. This
helicity is located mostly in large scale structures, as
will be shown in Section 6.

From mean field equations we obtain for the large
scale magnetic helicity (Mininni, Gómez, & Mahajan
2003b)

dHm

dt
= 2

∫ (
αB

2

− ηeffJ · B

)
dV , (17)

whereJ = ∇ × B is the electric current density.
This equation represents a transfer of magnetic helic-
ity from small scales to large scales. The mean field
helicity grows with the same sign as theα coefficient
(opposite sign as the kinetic helicity). Our results are
in good agreement with this relation, as well as previ-
ous simulations of MHD dynamo action (Brandenburg
2001; Mininni, Gómez, & Mahajan 2003b).

Although this generation of magnetic helicity by
dynamo action is expected to decrease as the magnetic
Reynolds numberRm increases, in simulations with
higher Reynolds numbers the growth of magnetic he-
licity seems to reach an asymptotic value.

5. HALL DYNAMOS

To quantitatively assess the role of the Hall effect
on dynamo action, we display results from runs with
different values ofǫ : the MHD run (ǫ = 0) and Hall-
MHD runs with ǫ = 0.066, 0.1 and0.2. We will fo-
cus on the Hall-enhanced dynamo regime (Mininni,
Gómez, & Mahajan 2003b). Note that all these val-
ues of ǫ correspond to dynamos where the Hall ef-
fect is only relevant in a fraction of the scales in-
volved. The Hall inverse length scale for these runs
is measured bykHall = 15, 10 and 5 respectively
(kHall = 1/ǫ). All length scales smaller than the Hall
scale are expected to be strongly affected by the Hall
effect. The Kolmogorov’s kinetic dissipation scale
[kν = (

〈
ω2

〉
/ν2)1/4] is kν ≈ 20 whenR = 100,

kν ≈ 40 whenR = 300, andkν ≈ 75 whenR = 560.
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Fig. 2.— Mean kinetic energy spectrum (thick line),
total energy spectrum (thick dashed line), and mag-
netic energy spectrum at different times (ǫ = 0 and
R = 300). The Kolmogorov’s slope is shown as a ref-
erence.

Fig. 3.— Magnetic helicity (−Hm).

5.1. Magnetic energy evolution

Figure 4 shows the kinetic and magnetic energy as
a function of time for the MHD and a Hall-MHD run
with R = 300 andǫ = 0.1. At early times, the evo-
lution of magnetic energy in MHD and Hall-MHD is
similar. Using mean field theory, the induction equa-
tion for the mean magnetic field reduces to

∂B

∂t
= ∇×

[(
U − ǫ∇×B

)
×B + αB

]
+ηeff∇

2
B,

(18)
with the Hall-MHD α-effect now given by (Mininni,
Gómez, & Mahajan 2002)

α =
τ

3

(
−ue · ∇×ue + b · ∇×b −

−ǫ b · ∇×∇×ue
)

. (19)

Hereue = u − ǫ∇×b is the fluctuating electron flow
velocity. When the fluctuating magnetic field is weak,
this expression reduces to equation (15) and the Hall
effect can be dropped. Therefore, the first stage corre-
sponds to a kinematic dynamo during which the Hall
effect is negligible.

After this stage, and when the dynamo-generated
magnetic fields are strong enough for the Hall effect to
become non-negligible, the evolution changes and the
magnetic energy keeps growing but at a different pace
(see also Figure 5). A third stage can be identified,
when the velocity field is affected by the Lorentz force
and the dynamo reaches saturation. The kinetic energy
drop is not as intense as in the MHD case, and the in-
crease of magnetic energy in this final stage is larger
than in the MHD case for moderate values ofǫ. Fi-
nally, a state with more magnetic energy than its MHD

Fig. 4.— Magnetic (below) and kinetic energy (above)
as a function of time for two runs withǫ = 0.1 and
ǫ = 0 (R = 300).
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counterpart is reached (by a factor2.3 whenR = 300
andǫ = 0.1).

Figure 5 shows the evolution for a Hall-MHD run
with R = 300 and ǫ = 0.2. Here, after the expo-
nentially growing stage, the magnetic field saturates at
an amplitude smaller than the previous run. Note that
equipartition between the kinetic and magnetic energy
is not reached.

When a turbulent stationary state is attained, the
sum of magnetic and kinetic energy is not equal to the
initial kinetic energy. This is related to the fact that,
when the magnetic seed is introduced, a new channel
for energy dissipation arises,

dE

dt
= −ν

∫
ω2 dV − η

∫
J2 dV , (20)

As in previous simulations (Mininni, Gómez, & Maha-
jan 2003b), it is found that the final energy reached for
the Hall-MHD runs is larger than the value obtained
for the MHD runs, revealing that Hall-MHD dynamos
can be more efficient (in the sense that they generate
more magnetic energy and dissipate less total energy).

Figure 6 shows the maximum value attained by the
magnetic energy as a function ofǫ for several simula-
tions with different Reynolds numbers and scale sep-
arations. WhenR = 560 the final amplitude reached
by the magnetic energy is unknown. Given the strin-
gent quadratic Courant-Friedrich-Lewy (CFL) condi-
tion imposed by dispersive waves in Hall-MHD, sim-
ulations were only carried up to saturation of the dy-
namo. The maximum value of the energy in Figure 6
is normalized with the value obtained in an MHD run
with the same Reynolds numbers and initial kinetic en-

Fig. 5.— Magnetic (below) and kinetic energy (above)
as a function of time for two runs withǫ = 0.2 and 0
(R = 300).

ergy and helicity. As previously mentioned, consider-
ing the three different regimes of the Hall dynamo dis-
cussed in Mininni, Gómez, & Mahajan (2003b), we
focus on the Hall-enhanced case. As the Reynolds
numbers are increased, the efficiency of the Hall-MHD
dynamo grows. Also, the value ofǫ at which maxi-
mum efficiency is obtained, decreases as the Reynolds
numbers are increased. Note that the growth of the
efficiency of the Hall-MHD dynamo with increasing
scale separation was predicted analytically by Mininni,
Gómez, & Mahajan (2002). The shift of most effi-
cientǫ to smaller values asR increases is also obtained
from analytical estimates (Mininni, Gómez, & Maha-
jan 2004).

5.2. Energy spectrum

Figure 7 shows the kinetic, magnetic, and total
energy spectra at different times forR = 300 and
ǫ = 0.1. Barringǫ, all the parameters and initial con-
ditions in this run are the same as those corresponding
to Figure 2. Therefore, a direct comparison between
the evolution of both spectra can be made. During
the first few time steps, the evolution is similar to the
MHD run, with the entire magnetic spectrum growing
at almost the same rate. The difference observed in
Mininni, Gómez, & Mahajan (2003b), that the large-
scale magnetic field is slightly larger than in its MHD
counterpart, is now increased as a result of the larger
Reynolds number and larger scale separation.

The rate of increase of the large scale magnetic field
changes in the presence of the Hall effect. While in
MHD the build-up of this field proceeds on a resis-
tive timescale, in Hall-MHD it grows faster. Note that
the magnetic energy in the shellk = 1 in Hall-MHD
(ǫ = 0.1) simulation att = 14.1 is a factor of 2 larger
than the magnetic energy in the same shell in the MHD
run att = 18.4. Also, the kinetic energy in the same
shell is larger. This can be also observed in Figure 8,
which shows the energy contained in the large scale
magnetic field (in the shellk = 1) as a function of
time for several values ofǫ. However, the filling fac-

tor (
〈
B

2
〉

/
〈
B2

〉
)1/2 is smaller asǫ is increased. At

t = 14 the filling factor is≈ 0.23 for ǫ = 0, ≈ 0.17
for ǫ = 0.1, and≈ 0.1 for ǫ = 0.2,

Note also that, while the MHD spectrum shows
super-equipartition at small scales (the magnetic en-
ergy is larger than the kinetic energy at large wave
numbers), the Hall-MHD leads to equipartition at
these scales. Both the evolution of the large scale

7



Fig. 6.—Em/Em(ǫ = 0) as a function ofǫ for runs
with R = 100 andR = 300. The values ofEm cor-
respond to the magnetic energy at the saturation level,
while Em(ǫ = 0) is the magnetic energy for an MHD
run

Fig. 7.— Mean kinetic energy spectrum (thick line),
total energy spectrum (thick dashed line), and mag-
netic energy spectrum at different times (ǫ = 0.1 and
R = 300).

and small scale magnetic fields are therefore clearly
affected by the Hall effect, even though the Hall effect
operates effectively only at small scales.

Figure 9 shows the spectrum forR = 300 andǫ =
0.2. In this case all wave numbers larger thankHall =
5 are affected by the Hall effect. However, the total
energy spectrum in the saturated state seems to obey a
Kolmogorov type law, although the Hall length scale
is placed in the middle of the inertial range.

Figure 10 shows the compensated energy spectrum
E(k)/(ε2/3k−5/3) for higher spatial resolution runs
with R = 560 and ǫ = 0 and0.1, using2563 grid
points. If the spectrum obeys a Kolmogorov type law,
the compensated spectrum should be flat over a cer-
tain range, and the amplitude of the spectrum in this
range gives the Kolmogorov constantCK . The mild
hump observed for the total energy before entering the
dissipative range, might be indicative of the presence
of a “bottleneck effect” for the energy cascade, as was
recently discussed by Haugen, Brandenburg & Dobler
(2003).

The spectra displayed in Figure 10 correspond to
the era when the dynamo is saturated. The first exam-
ple (Fig. 10(a)) represents the MHD limit (i.e.ǫ = 0),
while the second one (Fig. 10(b)) haskHall = 10
(ǫ = 0.1). All the length scales smaller than1/kHall

are expected to be dominated by the Hall effect. For
the MHD spectrum, the Kolmogorov constantCK ≈

1.39, a value slightly larger than the one found by
Haugen, Brandenburg & Dobler (2003),CK ≈ 1.3
(see also Haugen, Brandenburg & Dobler (2004)), but
smaller than the one obtained by Kida, Yanase, &
Mizushima (1991) (CK ≈ 2.1). No clear change
in the slope can be identified in the Hall-MHD case,

Fig. 8.— Magnetic energy in the shellk = 1 in Fourier
space as a function ofǫ and time.
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and the spectrum is compatible with a Kolmogorov
type law in its inertial range. However, the spectrum
could really be a little shallower. Higher spatial reso-
lution simulations are needed to settle this point. In
this case the Kolmogorov’s constant turns out to be
CK ≈ 1.66, somewhat larger than its MHD counter-
part. The Kolmogorov’s dissipation wave numbers in
the last stages of these runs arekν ≈ kη ≈ 70 [where
kη = (

〈
J2

〉
/η2)1/4].

5.3. Magnetic helicity

In Mininni, Gómez, & Mahajan (2003b), the Hall
effect was observed to inhibit the creation of net mag-
netic helicity by the dynamo process. This effect is en-
hanced as we increase the Reynolds numbers. While
the MHD dynamo is an efficient generator of magnetic
helicity with most of this helicity concentrated in the
larger scales, the Hall dynamo is somewhat sluggish;
the growth of net magnetic helicity is slower and in
some cases oscillates around zero (see Figure 11.) This
result is in good agreement with theoretical estimates
suggesting that in the presence of the Hall effect re-
connection events are faster (Priest & Forbes 1998; Ji
1999), and therefore dissipate less magnetic helicity
(see Section 6).

5.4. Kinetic helicity

In MHD, relative kinetic helicity is known to
change only slightly during dynamo action (Branden-
burg 2001). In all these simulations, kinetic energy
and kinetic helicity are injected at the same length
scale by the stirring force acting atkforce = 3. For
homogeneous hydrodynamic turbulence, kinetic helic-
ity directly cascades to smaller scales. On dimensional
grounds (Moffat 1978), the spectrum of kinetic helic-
ity in the inertial range is also expected to follow Kol-
mogorov’s law (Cheng et al. 2003; Gómez & Mininni
2004)

Hk(k) = CHkhelε
2/3k−5/3 , (21)

whereCH is another Kolmogorov constant, andkhel

is the scale where kinetic helicity is injected. Using
the inertial range kinetic energy expression (CK is the
standard Kolmogorov’s constant )

Ek(k) = CKε2/3k−5/3 , (22)

the ratio between the total kinetic helicity and kinetic
energy in hydrodynamic turbulence come out to be

Hk

Ek
=

∫
U · ω dV∫
U2dV

≈ khel , (23)

Fig. 9.— Mean kinetic energy spectrum (thick line),
total energy spectrum (thick dashed line), and mag-
netic energy spectrum at different times (ǫ = 0.2 and
R = 300).

Fig. 10.— Total compensated energy spectrum
k5/3ε−2/3Ek (thick line), kinetic energy spectrum
(thin line), and magnetic energy spectrum (dashed
line) att = 5.5 for a run with (a)ǫ = 0, and (b)ǫ = 0.1
(R = 560, 2563 grid points).
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wherekhel = kforce in our case. What happens after
we introduce the magnetic seed?

Figure 12 shows the ratioHk/Ek for the MHD and
the Hall-MHD runs withR = 300. The evolution of
the relative kinetic helicity is similar. In the MHD run
Hk/Ek ≈ 2.5, a value close tokforce = 3. Note that,
although the total kinetic energy (and the kinetic helic-
ity) decreases during the time evolution as a result of
the increasing Lorentz force, the ratioHk/Ek remains
nearly constant. On the other hand, this ratio grows
with ǫ in the Hall-MHD runs. The growth takes place
just after the exponentially growing stage, when a large
scale magnetic field is developing in the box. This re-
sult suggests that a new source of kinetic helicity has
appeared, and is in good agreement with theoretical es-
timates suggesting that the Hall effect introduces hand-
edness in the fluid motions (Mininni, Gómez, & Ma-
hajan 2004). However, we want to point out that this
handedness does not, by itself, generate a netα-effect.

As previously mentioned, the relative kinetic he-
licity Hk/(

〈
U2

〉 〈
ω2

〉
) in Hall-MHD also shows the

same behavior, changing from a relative kinetic helic-
ity of 0.4 whenǫ = 0 up to about0.6 whenǫ = 0.1.

6. LARGE SCALE MAGNETIC FIELD GEN-
ERATION

In this section we present MHD and Hall-MHD re-
sults for an external force located atkforce = 10. Sim-
ulations were carried withν = η = 0.02 and1283 grid
points. In this case the Reynolds numbers are smaller
(R ≈ 220 andRλ ≈ 20), and the turbulence is weaker,
since there are not enough modes in Fourier space for a
direct cascade to develop properly. On the other hand,
there is more room for the generation of a large scale

Fig. 11.— Magnetic helicity forǫ = 0, 0.066, 0.1, and
0.2 (R = 300).

magnetic field through inverse cascade. Simulations
were performed forǫ = 0, 0.1, and0.2, correspond-
ing respectively to the MHD case,kHall = 10 and
kHall = 5.

Figure 13 shows the evolution of the magnetic and
kinetic energy in the MHD simulation. After satura-
tion, a large scale magnetic field grows on a resistive
time scale, as will be shown in the energy spectrum and
was previously observed in large scale dynamo simu-
lations (Brandenburg 2001). Note that the system fi-
nally reaches a state of super-equipartition, i.e. a level
of magnetic energy which is larger than the kinetic en-
ergy. Figure 14 shows its counterpart whenǫ = 0.1
and0.2. In the simulation withǫ = 0.1, the growth of
magnetic energy after the saturation is clearly faster,
and the system reaches a final state with more mag-
netic energy than in the MHD run.

Figures 15 and 16 show the energy spectrum at dif-
ferent times for runs withǫ = 0 andǫ = 0.1, respec-
tively. Note that in both simulations, the magnetic en-
ergy at intermediate scales (2 < k < 8) starts to de-
cay after saturation (t > 3.5), while magnetic energy
at the largest scale (k = 1) keeps growing. As a re-
sult, aftert = 8 the system reaches the state of super-
equipartition in the MHD case. This is even more clear
in Fourier space (Figure 15), where magnetic energy in
the shellk = 1 is two orders of magnitude larger than
kinetic energy att = 17.5. An excess of magnetic
energy can also be observed at small scales.

In the Hall-MHD case, we observe again a faster
growth of the large scale magnetic field (Figure 16),
but with a final state with super-equipartition only
at large scales. Moreover, the kinetic energy in the
shell k = 1 is one order of magnitude larger than
in the MHD case, and at small scales we obtain sub-

Fig. 12.—Hk/Ek for ǫ = 0, 0.066, and0.1.
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Fig. 13.— Magnetic (below) and kinetic energy
(above) as a function of time forǫ = 0 andkforce =
10.

Fig. 14.— Magnetic (below) and kinetic energy
(above) as a function of time for two runs withǫ = 0.2,
0.1 and 0 (kforce = 10).

equipartition between magnetic and kinetic energy.

Figure 17 shows the magnetic helicity spectrum
as a function of time for different values ofǫ. As
mentioned in Section 4, theα effect creates magnetic
helicity of a sign opposite to that of kinetic helicity
at large scales. This effect is balanced by the cre-
ation of an opposite amount of magnetic helicity at
small scales. Therefore, the diffusion preferentially
destroys the short-scale magnetic helicity in reconnec-
tion events, leaving a net helicity of opposite sign at
large scales (Brandenburg 2001). Mininni, Gómez,
& Mahajan (2003b) suggested that while the Hall-
MHD dynamo process also creates equal and oppo-
site amounts of magnetic helicity at large and at small
scales, the dissipation of magnetic helicity at small
scales is less efficient asǫ is increased. Figure 17
shows that when the Hall effect is present, even at late
times an excess of positive magnetic helicity at small
scales (k ≥ 10) can be readily identified in the spectra.

7. DISCUSSION

In this paper we have presented the results of di-
rect numerical simulations of turbulent dynamo action
in Hall-MHD. We find that with increasing Reynolds
number and scale separation, the Hall MHD dynamo
works more efficiently when the Hall length is close
but larger than the dissipation scale (Hall-enhanced
regime). For larger values ofǫ the Hall MHD dynamo
is less efficient. In addition, the value ofǫ (which mea-
sures the strength of the Hall term) at which the dy-
namo is most efficient decreases at higher Reynolds
numbers.

An acceleration of the process responsible for the
growth of a large scale magnetic field is observed at
moderate values ofǫ. Although these simulations are
made at Reynolds numbers which are far away from
realistic values for astrophysical plasmas, the results
obtained are encouraging; the dynamos tend to work
better at high Reynolds numbers

By calculating the magnitude and nature of the gen-
erated magnetic field as the amplitude of the Hall term
is varied, we obtain new evidence showing that the
Hall dynamo can be fundamentally different from its
classical MHD counterpart.
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de Fı́sica, FCEN, UBA is acknowledged. The authors
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Fig. 15.— Mean kinetic energy spectrum (thick line),
total energy spectrum (thick dashed line), and mag-
netic energy spectrum at different times (ǫ = 0 and
kforce = 10).

Fig. 16.— Mean kinetic energy spectrum (thick line),
total energy spectrum (thick dashed line), and mag-
netic energy spectrum at different times (ǫ = 0.1 and
kforce = 10).

reviewing the manuscript, and to the Abdus Salam In-
ternational Centre for Theoretical Physics, were the
initial stages of this study were performed. Research
of SMM was supported by US DOE contract DE-
FG03-96ER-54366. Research of DOG and PDM has
been partially funded by grant X209/01 from the Uni-
versity of Buenos Aires and by grant PICT 03-9483
from ANPCyT. PDM is a fellow of CONICET, and
DOG is a member of the Carrera del Investigador Ci-
entifico of CONICET.

REFERENCES

Balbus, S.A. & Terquem, C. 2001, ApJ, 552, 235

Blackman, E.G. & Field, G.B. 1999, ApJ, 521, 597

Braginskii, S.I. 1965, Rev. Plasma Phys., 1, 205

Brandenburg, A., & Subramanian, K. 2000, Astron. &
Astrophys., 361, L33

Brandenburg, A. 2001, ApJ, 550, 824

Canuto, C., Hussaini, M.Y., Quarteroni, A., & Zang,
T.A. 1988, Spectral Methods in Fluid Dynamics
(Berlin: Springer-Verlag)

Galanti, B., Kleeorin, N., & Rogachevskii, I. 1994,
Phys. of Plasmas, 1, 3843

Cattaneo, F. & Hughes, D.W. 1996, Phys. Rev. E, 54,
R4532

Chen, Q., Chen, S., & Eyink, G. 2003, Phys. Fluids,
15, 361
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