5,815 research outputs found

    Theoretical Interpretation of the Measurements of the Secondary Eclipses of TrES-1 and HD209458b

    Full text link
    We calculate the planet-star flux-density ratios as a function of wavelength from 0.5 microns to 25 microns for the transiting extrasolar giant planets TrES-1 and HD209458b and compare them with the recent Spitzer/IRAC-MIPS secondary eclipse data in the 4.5, 8.0, and 24 micron bands. With only three data points and generic calibration issues, detailed conclusions are difficult, but inferences regarding atmospheric composition, temperature, and global circulation can be made. Our models reproduce the observations reasonably well, but not perfectly, and we speculate on the theoretical consequences of variations around our baseline models. One preliminary conclusion is that we may be seeing in the data indications that the day side of a close-in extrasolar giant planet is brighter in the mid-infrared than its night side, unlike Jupiter and Saturn. This correspondence will be further tested when the data anticipated in other Spitzer bands are acquired, and we make predictions for what those data may show.Comment: 15 pages, including 3 color figures, submitted to the Astrophysical Journa

    A Theory for the Radius of the Transiting Giant Planet HD 209458b

    Full text link
    Using a full frequency-dependent atmosphere code that can incorporate irradiation by a central primary star, we calculate self-consistent boundary conditions for the evolution of the radius of the transiting planet HD 209458b. Using a well-tested extrasolar giant planet evolutionary code, we then calculate the behavior of this planet's radius with age. The measured radius is in fact a transit radius that resides high in HD 209458b's inflated atmosphere. Using our derived atmospheric and interior structures, we find that irradiation plus the proper interpretation of the transit radius can yield a theoretical radius that is within the measured error bars. We conclude that if HD 209458b's true transit radius is at the lower end of the measured range, an extra source of core heating power is not necessary to explain the transit observations.Comment: 6 pages in emulateapj format, plus 2 figures (one color), accepted to the Astrophysical Journa

    Mu and Tau Neutrino Thermalization and Production in Supernovae: Processes and Timescales

    Full text link
    We investigate the rates of production and thermalization of νμ\nu_\mu and ντ\nu_\tau neutrinos at temperatures and densities relevant to core-collapse supernovae and protoneutron stars. Included are contributions from electron scattering, electron-positron annihilation, nucleon-nucleon bremsstrahlung, and nucleon scattering. For the scattering processes, in order to incorporate the full scattering kinematics at arbitrary degeneracy, the structure function formalism developed by Reddy et al. (1998) and Burrows and Sawyer (1998) is employed. Furthermore, we derive formulae for the total and differential rates of nucleon-nucleon bremsstrahlung for arbitrary nucleon degeneracy in asymmetric matter. We find that electron scattering dominates nucleon scattering as a thermalization process at low neutrino energies (ϵν10\epsilon_\nu\lesssim 10 MeV), but that nucleon scattering is always faster than or comparable to electron scattering above ϵν10\epsilon_\nu\simeq10 MeV. In addition, for ρ1013\rho\gtrsim 10^{13} g cm3^{-3}, T14T\lesssim14 MeV, and neutrino energies 60\lesssim60 MeV, nucleon-nucleon bremsstrahlung always dominates electron-positron annihilation as a production mechanism for νμ\nu_\mu and ντ\nu_\tau neutrinos.Comment: 29 pages, LaTeX (RevTeX), 13 figures, submitted to Phys. Rev. C. Also to be found at anonymous ftp site http://www.astrophysics.arizona.edu; cd to pub/thompso

    Strong Water Absorption in the Dayside Emission Spectrum of the Planet HD 189733b

    Full text link
    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'Hot Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial for understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report on the detection of strong water absorption in a high signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microns and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures might alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat distribution from the dayside to the night side is weak. Reconciling this with the high night side temperature will require a better understanding of atmospheric circulation or possible additional energy sources.Comment: 11 pages, 1 figure, published in Natur

    The Proto-neutron Star Phase of the Collapsar Model and the Route to Long-soft Gamma-ray Bursts and Hypernovae

    Full text link
    Recent stellar evolutionary calculations of low-metallicity massive fast-rotating main-sequence stars yield iron cores at collapse endowed with high angular momentum. It is thought that high angular momentum and black hole formation are critical ingredients of the collapsar model of long-soft gamma-ray bursts (GRBs). Here, we present 2D multi-group, flux-limited-diffusion MHD simulations of the collapse, bounce, and immediate post-bounce phases of a 35-Msun collapsar-candidate model of Woosley & Heger. We find that, provided the magneto-rotational instability (MRI) operates in the differentially-rotating surface layers of the millisecond-period neutron star, a magnetically-driven explosion ensues during the proto-neutron star phase, in the form of a baryon-loaded non-relativistic jet, and that a black hole, central to the collapsar model, does not form. Paradoxically, and although much uncertainty surrounds stellar mass loss, angular momentum transport, magnetic fields, and the MRI, current models of chemically homogeneous evolution at low metallicity yield massive stars with iron cores that may have too much angular momentum to avoid a magnetically-driven, hypernova-like, explosion in the immediate post-bounce phase. We surmise that fast rotation in the iron core may inhibit, rather than enable, collapsar formation, which requires a large angular momentum not in the core but above it. Variations in the angular momentum distribution of massive stars at core collapse might explain both the diversity of Type Ic supernovae/hypernovae and their possible association with a GRB. A corollary might be that, rather than the progenitor mass, the angular momentum distribution, through its effect on magnetic field amplification, distinguishes these outcomes.Comment: 5 pages, 1 table, 2 figures, accepted to ApJ

    Ab initio Translationally Invariant Nonlocal One-body Densities from No-core Shell-model Theory

    Get PDF
    [Background:] It is well known that effective nuclear interactions are in general nonlocal. Thus if nuclear densities obtained from {\it ab initio} no-core-shell-model (NCSM) calculations are to be used in reaction calculations, translationally invariant nonlocal densities must be available. [Purpose:] Though it is standard to extract translationally invariant one-body local densities from NCSM calculations to calculate local nuclear observables like radii and transition amplitudes, the corresponding nonlocal one-body densities have not been considered so far. A major reason for this is that the procedure for removing the center-of-mass component from NCSM wavefunctions up to now has only been developed for local densities. [Results:] A formulation for removing center-of-mass contributions from nonlocal one-body densities obtained from NCSM and symmetry-adapted NCSM (SA-NCSM) calculations is derived, and applied to the ground state densities of 4^4He, 6^6Li, 12^{12}C, and 16^{16}O. The nonlocality is studied as a function of angular momentum components in momentum as well as coordinate space [Conclusions:] We find that the nonlocality for the ground state densities of the nuclei under consideration increases as a function of the angular momentum. The relative magnitude of those contributions decreases with increasing angular momentum. In general, the nonlocal structure of the one-body density matrices we studied is given by the shell structure of the nucleus, and can not be described with simple functional forms.Comment: 13 pages, 11 Figure

    Testing the standard fireball model of GRBs using late X-ray afterglows measured by Swift

    Get PDF
    We show that all X-ray decay curves of GRBs measured by Swift can be fitted using one or two components both of which have exactly the same functional form comprised of an early falling exponential phase followed by a power law decay. The 1st component contains the prompt gamma-ray emission and the initial X-ray decay. The 2nd component appears later, has a much longer duration and is present for ~80% of GRBs. It most likely arises from the external shock which eventually develops into the X-ray afterglow. In the remaining ~20% of GRBs the initial X-ray decay of the 1st component fades more slowly than the 2nd and dominates at late times to form an afterglow but it is not clear what the origin of this emission is. The temporal decay parameters and gamma/X-ray spectral indices derived for 107 GRBs are compared to the expectations of the standard fireball model including a search for possible "jet breaks". For ~50% of GRBs the observed afterglow is in accord with the model but for the rest the temporal and spectral indices do not conform to the expected closure relations and are suggestive of continued, late, energy injection. We identify a few possible jet breaks but there are many examples where such breaks are predicted but are absent. The time, T_a, at which the exponential phase of the 2nd component changes to a final powerlaw decay afterglow is correlated with the peak of the gamma-ray spectrum, E_peak. This is analogous to the Ghirlanda relation, indicating that this time is in some way related to optically observed break times measured for pre-Swift bursts.Comment: submitted to Ap

    Relative entropy via non-sequential recursive pair substitutions

    Full text link
    The entropy of an ergodic source is the limit of properly rescaled 1-block entropies of sources obtained applying successive non-sequential recursive pairs substitutions (see P. Grassberger 2002 ArXiv:physics/0207023 and D. Benedetto, E. Caglioti and D. Gabrielli 2006 Jour. Stat. Mech. Theo. Exp. 09 doi:10.1088/1742.-5468/2006/09/P09011). In this paper we prove that the cross entropy and the Kullback-Leibler divergence can be obtained in a similar way.Comment: 13 pages , 2 figure

    Proof Theory, Transformations, and Logic Programming for Debugging Security Protocols

    Get PDF
    We define a sequent calculus to formally specify, simulate, debug and verify security protocols. In our sequents we distinguish between the current knowledge of principals and the current global state of the session. Hereby, we can describe the operational semantics of principals and of an intruder in a simple and modular way. Furthermore, using proof theoretic tools like the analysis of permutability of rules, we are able to find efficient proof strategies that we prove complete for special classes of security protocols including Needham-Schroeder. Based on the results of this preliminary analysis, we have implemented a Prolog meta-interpreter which allows for rapid prototyping and for checking safety properties of security protocols, and we have applied it for finding error traces and proving correctness of practical examples
    corecore