386 research outputs found

    Possible effect of collective modes in zero magnetic field transport in an electron-hole bilayer

    Full text link
    We report single layer resistivities of 2-dimensional electron and hole gases in an electron-hole bilayer with a 10nm barrier. In a regime where the interlayer interaction is stronger than the intralayer interaction, we find that an insulating state (dρ/dT<0d\rho/dT < 0) emerges at T1.5KT\sim1.5{\rm K} or lower, when both the layers are simultaneously present. This happens deep in the ""metallic" regime, even in layers with kFl>500k_{F}l>500, thus making conventional mechanisms of localisation due to disorder improbable. We suggest that this insulating state may be due to a charge density wave phase, as has been expected in electron-hole bilayers from the Singwi-Tosi-Land-Sj\"olander approximation based calculations of L. Liu {\it et al} [{\em Phys. Rev. B}, {\bf 53}, 7923 (1996)]. Our results are also in qualitative agreement with recent Path-Integral-Monte-Carlo simulations of a two component plasma in the low temperature regime [ P. Ludwig {\it et al}. {\em Contrib. Plasma Physics} {\bf 47}, No. 4-5, 335 (2007)]Comment: 5 pages + 3 EPS figures (replaced with published version

    Herschel-SPIRE-Fourier Transform Spectroscopy of the nearby spiral galaxy IC342

    Full text link
    We present observations of the nearby spiral galaxy IC342 with the Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier Transform Spectrometer. The spectral range afforded by SPIRE, 196-671 microns, allows us to access a number of 12CO lines from J=4--3 to J=13--12 with the highest J transitions observed for the first time. In addition we present measurements of 13CO, [CI] and [NII]. We use a radiative transfer code coupled with Bayesian likelihood analysis to model and constrain the temperature, density and column density of the gas. We find two 12CO components, one at 35 K and one at 400 K with CO column densities of 6.3x10^{17} cm^{-2} and 0.4x10^{17} cm^{-2} and CO gas masses of 1.26x10^{7} Msolar and 0.15x10^{7} Msolar, for the cold and warm components, respectively. The inclusion of the high-J 12CO line observations, indicate the existence of a much warmer gas component (~400 K) confirming earlier findings from H_{2} rotational line analysis from ISO and Spitzer. The mass of the warm gas is 10% of the cold gas, but it likely dominates the CO luminosity. In addition, we detect strong emission from [NII] 205microns and the {3}P_{1}->{3}P_{0} and {3}P_{2} ->{3}P_{1} [CI] lines at 370 and 608 microns, respectively. The measured 12CO line ratios can be explained by Photon-dominated region (PDR) models although additional heating by e.g. cosmic rays cannot be excluded. The measured [CI] line ratio together with the derived [C] column density of 2.1x10^{17} cm^{-2} and the fact that [CI] is weaker than CO emission in IC342 suggests that [CI] likely arises in a thin layer on the outside of the CO emitting molecular clouds consistent with PDRs playing an important role.Comment: 9 pages, 8 figures, accepted for publication in Monthly Notices of the Royal Astronomical Society (MNRAS

    Heating and cooling of the neutral ISM in the NGC4736 circumnuclear ring

    Get PDF
    The manner in which gas accretes and orbits within circumnuclear rings has direct implications for the star formation process. In particular, gas may be compressed and shocked at the inflow points, resulting in bursts of star formation at these locations. Afterwards the gas and young stars move together through the ring. In addition, star formation may occur throughout the ring, if and when the gas reaches sufficient density to collapse under gravity. These two scenarios for star formation in rings are often referred to as the `pearls on a string' and `popcorn' paradigms. In this paper, we use new Herschel PACS observations, obtained as part of the KINGFISH Open Time Key Program, along with archival Spitzer and ground-based observations from the SINGS Legacy project, to investigate the heating and cooling of the interstellar medium in the nearby star-forming ring galaxy, NGC4736. By comparing spatially resolved estimates of the stellar FUV flux available for heating, with the gas and dust cooling derived from the FIR continuum and line emission, we show that while star formation is indeed dominant at the inflow points in NGC 4736, additional star formation is needed to balance the gas heating and cooling throughout the ring. This additional component most likely arises from the general increase in gas density in the ring over its lifetime. Our data provide strong evidence, therefore, for a combination of the two paradigms for star formation in the ring in NGC4736.Comment: accepted for publication in A&

    Dissecting the origin of the submillimeter emission in nearby galaxies with Herschel and LABOCA

    Get PDF
    We model the infrared to submillimeter spectral energy distribution of 11 nearby galaxies of the KINGFISH sample using Spitzer and Herschel data and compare model extrapolations at 870um (using different fitting techniques) with LABOCA 870um observations. We investigate how the differences between predictions and observations vary with model assumptions or environment. At global scales, we find that modified blackbody models using realistic cold emissivity indices (beta_c=2 or 1.5) are able to reproduce the 870um observed emission within the uncertainties for most of the sample. Low values (beta_c<1.3) would be required in NGC0337, NGC1512 and NGC7793. At local scales, we observe a systematic 870um excess when using beta_=2.0. The beta_c=1.5 or the Draine and Li (2007) models can reconcile predictions with observations in part of the disks. Some of the remaining excesses occur towards the centres and can be partly or fully accounted for by non-dust contributions such as CO(3-2) or, to a lesser extent, free-free or synchrotron emission. In three non-barred galaxies, the remaining excesses rather occur in the disk outskirts. This could be a sign of a flattening of the submm slope (and decrease of the effective emissivity index) with radius in these objects.Comment: 31 pages (including appendix), 7 figures, accepted for publication in MNRA

    A far-IR view of the starburst driven superwind in NGC 2146

    Get PDF
    NGC 2146, a nearby luminous infrared galaxy (LIRG), presents evidence for outflows along the disk minor axis in all gas phases (ionized, neutral atomic and molecular). We present an analysis of the multi-phase starburst driven superwind in the central 5 kpc as traced in spatially resolved spectral line observations, using far-IR Herschel PACS spectroscopy, to probe the effects on the atomic and ionized gas, and optical integral field spectroscopy to examine the ionized gas through diagnostic line ratios. We observe an increased ~250 km/s velocity dispersion in the [OI] 63 micron, [OIII] 88 micron, [NII] 122 micron and [CII] 158 micron fine-structure lines that is spatially coincident with high excitation gas above and below the disk. We model this with a slow ~200 km/s shock and trace the superwind to the edge of our field of view 2.5 kpc above the disk. We present new SOFIA 37 micron observations to explore the warm dust distribution, and detect no clear dust entrainment in the outflow. The stellar kinematics appear decoupled from the regular disk rotation seen in all gas phases, consistent with a recent merger event disrupting the system. We consider the role of the superwind in the evolution of NGC 2146 and speculate on the evolutionary future of the system. Our observations of NGC 2146 in the far-IR allow an unobscured view of the wind, crucial for tracing the superwind to the launching region at the disk center, and provide a local analog for future ALMA observations of outflows in high redshift systems.Comment: 16 pages, 13 figures, accepted for publication in Ap

    Switching between attractive and repulsive Coulomb-interaction-mediated drag in an ambipolar GaAs/AlGaAs bilayer device

    Get PDF
    We present measurements of Coulomb drag in an ambipolar GaAs/AlGaAs double quantum well structure that can be configured as both an electron-hole bilayer and a hole-hole bilayer, with an insulating barrier of only 10 nm between the two quantum wells. The Coulomb drag resistivity is a direct measure of the strength of the interlayer particle-particle interactions. We explore the strongly interacting regime of low carrier densities (2D interaction parameter rsr_s up to 14). Our ambipolar device design allows comparison between the effects of the attractive electron-hole and repulsive hole-hole interactions, and also shows the effects of the different effective masses of electrons and holes in GaAs.This work was financially supported by the UK Engineering and Physical Sciences Research Council. A.F.C. acknowledges financial support from Trinity College, Cambridge, and IF from Toshiba Research Europe.This is the author accepted manuscript. The final version is available from the American Institute of Physics via http://dx.doi.org/10.1063/1.494176

    Linear non-hysteretic gating of a very high density 2DEG in an undoped metal-semiconductor-metal sandwich structure

    Full text link
    Modulation doped GaAs-AlGaAs quantum well based structures are usually used to achieve very high mobility 2-dimensional electron (or hole) gases. Usually high mobilities (>107cm2V1s1>10^{7}{\rm{cm}^{2}\rm{V}^{-1}\rm{s}^{-1}}) are achieved at high densities. A loss of linear gateability is often associated with the highest mobilites, on account of a some residual hopping or parallel conduction in the doped regions. We have developed a method of using fully undoped GaAs-AlGaAs quantum wells, where densities 6×1011cm2\approx{6\times10^{11}\rm{cm}^{-2}} can be achieved while maintaining fully linear and non-hysteretic gateability. We use these devices to understand the possible mobility limiting mechanisms at very high densities.Comment: 4 pages, 3 eps figure

    The Ionized Gas in Nearby Galaxies as Traced by the [NII] 122 and 205 \mu m Transitions

    Get PDF
    The [NII] 122 and 205 \mu m transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved regions with a typical size of ~1 kiloparsec, with observations of both [NII] far-infrared lines. We measure [NII] 122/205 line ratios in the ~0.6-6 range, which corresponds to electron gas densities nen_e~1-300 cm3^{-3}, with a median value of nen_e=30 cm3^{-3}. Variations in the electron density within individual galaxies can be as a high as a factor of ~50, frequently with strong radial gradients. We find that nen_e increases as a function of infrared color, dust-weighted mean starlight intensity, and star formation rate surface density (ΣSFR\Sigma_{SFR}). As the intensity of the [NII] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the star formation rate (SFR). We derive relations between the [NII] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [NII] surface brightness and ΣSFR\Sigma_{SFR} can be understood as a property of the nen_e distribution. For regions with nen_e close to or higher than the [NII] line critical densities, the low-density limit [NII]-based SFR calibration systematically underestimates the SFR since [NII] emission is collisionally quenched. Finally, we investigate the relation between [NII] emission, SFR, and nen_e by comparing our observations to predictions from the MAPPINGS-III code.Comment: 18 pages, 9 figures, accepted for publication in The Astrophysical Journa
    corecore