4,850 research outputs found

    Geometric aspects of nonholonomic field theories

    Get PDF
    A geometric model for nonholonomic Lagrangian field theory is studied. The multisymplectic approach to such a theory as well as the corresponding Cauchy formalism are discussed. It is shown that in both formulations, the relevant equations for the constrained system can be recovered by a suitable projection of the equations for the underlying free (i.e. unconstrained) Lagrangian system.Comment: 29 pages; typos remove

    Unified formalism for higher-order non-autonomous dynamical systems

    Full text link
    This work is devoted to giving a geometric framework for describing higher-order non-autonomous mechanical systems. The starting point is to extend the Lagrangian-Hamiltonian unified formalism of Skinner and Rusk for these kinds of systems, generalizing previous developments for higher-order autonomous mechanical systems and first-order non-autonomous mechanical systems. Then, we use this unified formulation to derive the standard Lagrangian and Hamiltonian formalisms, including the Legendre-Ostrogradsky map and the Euler-Lagrange and the Hamilton equations, both for regular and singular systems. As applications of our model, two examples of regular and singular physical systems are studied.Comment: 43 pp. We have corrected and clarified the statement of Propositions 2 and 3. A remark is added after Proposition

    Hamilton-Jacobi Theory in k-Symplectic Field Theories

    Full text link
    In this paper we extend the geometric formalism of Hamilton-Jacobi theory for Mechanics to the case of classical field theories in the k-symplectic framework

    Spectral analysis of Markarian 421 and Markarian 501 with HAWC

    Full text link
    The Hight Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory monitors the gamma-ray sky in the energy range from 100 GeV to 100 TeV and has detected two very high energy (VHE) blazars: Markarian 421 (Mrk 421) and Markarian 501 (Mrk 501) in 1.5 years of observations. In this work, we present the spectral analysis above 1 TeV of both sources using a maximum likelihood method and an artificial neural network as an energy estimator. The main objectives are to constrain the spectral curvature of Mrk 421 and Mrk 501 at \sim5 TeV using the EBL models from Gilmore et al. (2012) and Franceschini et al. (2008).Comment: Presented at the 35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Korea. See arXiv:1708.02572 for all HAWC contribution

    Nonholonomic constraints in kk-symplectic Classical Field Theories

    Get PDF
    A kk-symplectic framework for classical field theories subject to nonholonomic constraints is presented. If the constrained problem is regular one can construct a projection operator such that the solutions of the constrained problem are obtained by projecting the solutions of the free problem. Symmetries for the nonholonomic system are introduced and we show that for every such symmetry, there exist a nonholonomic momentum equation. The proposed formalism permits to introduce in a simple way many tools of nonholonomic mechanics to nonholonomic field theories.Comment: 27 page

    NO ANGIOSTRONGYLUS CANTONENSIS (NEMATODA: METASTRONGYLIDAE) OBSERVED IN 108 RATS IN SAN JUAN, P. R.

    Get PDF
    NO ANGIOSTRONGYLUS CANTONENSIS (NEMATODA: METASTRONGYLIDAE) OBSERVED IN 108 RATS IN SAN JUAN, P. R

    Unified formalism for the generalized kth-order Hamilton-Jacobi problem

    Get PDF
    The geometric formulation of the Hamilton-Jacobi theory enables us to generalize it to systems of higher-order ordinary differential equations. In this work we introduce the unified Lagrangian-Hamiltonian formalism for the geometric Hamilton-Jacobi theory on higher-order autonomous dynamical systems described by regular Lagrangian functions.Comment: 9pp. Revised version: Minor corrections done. Second part of our previous work arXiv:1309.2166. arXiv admin note: substantial text overlap with arXiv:1309.216

    Symmetries in Classical Field Theory

    Full text link
    The multisymplectic description of Classical Field Theories is revisited, including its relation with the presymplectic formalism on the space of Cauchy data. Both descriptions allow us to give a complete scheme of classification of infinitesimal symmetries, and to obtain the corresponding conservation laws.Comment: 70S05; 70H33; 55R10; 58A2
    corecore