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Abstract
The geometric formulation of the Hamilton-Jacobi theory enables us to generalize it to
systems of higher-order ordinary differential equations. In this work we introduce the unified

Lagrangian-Hamiltonian formalism for the geometric Hamilton-Jacobi theory on higher-order
autonomous dynamical systems described by regular Lagrangian functions.
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1 Introduction

The geometric formulation of the Hamilton-Jacobi theory given in [2] and [4] enables us to
generalize it to systems of higher-order ordinary differential equations. This generalization has
been done recently for the Lagrangian and Hamiltonian formalism of higher-order autonomous
mechanical systems described by regular Lagrangian functions [3]. The aim of this work is to
give a unified Lagrangian-Hamiltonian version of this theory for these kinds of systems, using
the unified framework introduced by Skinner and Rusk [8]. The advantage of this formulation
is that it compresses the Lagrangian and Hamiltonian Hamilton—Jacobi problems into a single
formalism which allows to recover both of them in a simple way, and it is specially interesting
when dealing with singular systems.

All the manifolds are real, second countable and C*°. The maps and the structures are
assumed to be C*°. Sum over repeated indices is understood.

2 Higher-order tangent bundles

Let Q be a n-dimensional manifold, and k& € Z*. The kth-order tangent bundle of Q is the
(k + 1)n-dimensional manifold T*Q made of the k-jets of the bundle 7: R x Q — R with fixed
source point t = 0 € R; that is, TFQ = J(]fw.

We have the following natural projections (for r < k):
ph:TEQ — TrQ . pFTRQ — Q
ke — dte ik — 6(0)

where quS denotes a point in T*Q; that is, the equivalence class of a curve ¢: I C R — Q by
the k-jet equivalence relation. Notice that plg = %, where T°Q is canonically identified with Q,
and p’,z = IdiQ. Observe also that pé op =ph,for 0 <s<I<r<k.

If : R — Q is a curve in Q, the canonical lifting of ¢ to T*Q is the curve j*¢: R — T*Q
defined as the k-jet lifting of ¢ restricted to T*Q < J*7 (see [5]).
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3 The Hamilton-Jacobi problem in the Lagrangian-Hamiltonian
formalism

Let @ be a n-dimensional smooth manifold modeling the configuration space of a kth-order au-
tonomous dynamical system with n degrees of freedom, and let £ € C>(T*Q) be a Lagrangian
function for this system, which is assumed to be regular. In the Lagrangian-Hamiltonian for-
malism, we consider the bundle W = T?*~1Q Xpe-1g T* (T*=1Q) with canonical projections
pry: W — T?71Q and pry: W — T*(TF1Q). Tt is clear from the definition that the bundle
W fibers over T*=1Q. Let p: W — T*~'Q be the canonical projection. Obviously, we have

p= pik__ll o pry; = Trk-1 © pry. Hence, we have the following commutative diagram

pry pro
T2k—1Q p T*(Tk—lQ)
pgkfl %Q
Tk—lQ

We consider in W the presymplectic form Q = pr w,_; € 22(W), where w1 is the
canonical symplectic form in T*(T*~1Q). In addition, from the Lagrangian function £, and using
the canonical coupling function C € C*° (W), we construct a Hamiltonian function H € C*(W)
as H = C — L. Thus, the dynamical equation for the system is

Z(XLH)Q =dH, Xpge€ %(W) . (1)

Following the constraint algorithm in [5], a solution to the equation () exists on the points of a
submanifold j,: W, < W which can be identified with the graph of the Legendre-Ostrogradsky
map FL: T?¢71Q — T*(TF'Q) associated to £. If the Lagrangian function is regular, then
there exists a unique vector field Xz g solution to (Il) and tangent to W, (see [§]).

3.1 The generalized Hamilton-Jacobi problem

We first state the generalized version of the Hamilton-Jacobi problem. Following the same
patterns as in [2], [3] and [4] (see also an approach to the problem for higher-order field theories
in [9]), the natural definition for the generalized Hamilton-Jacobi problem in the Skinner-Rusk
setting [7], [8] is the following.

Definition 1 The generalized kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem (or
generalized kth-order unified Hamilton-Jacobi problem) consists in finding a section s € T'(p)
and a vector field X € X(T*71Q) such that the following conditions are satisfied:

1. The submanifold Im(s) < W is contained in W,.

2. If v: R — TF1Q is an integral curve of X, then so~: R — W is an integral curve of
XLH, that iS,

Xoy=4= Xrgo(soy)=507. (2)

It is clear that the vector 2field X € X(T*~'Q) cannot be chosen independently from the
section s € I'(p). Indeed, following the same pattern as in [2] we can prove:
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Proposition 1 The pair (s, X) € T'(p) x X(T*~1Q) satisfies the two conditions in Definition [
if, and only if, Xrg and X are s-related.

Corollary 1 If s € T(p) and X € X(TF'Q) satisfy the two conditions in Definition [, then
X =TpoXrgos.

That is, the vector field X € X(T*"'Q) is completely determined by the section s € T'(p),
and it is called the vector field associated to s. Therefore, the search of a pair (s, X) € I'(p) x
X(T*1Q) satisfying the two conditions in Definition [ is equivalent to the search of a section
s € I'(p) such that the pair (s, Tpo Xz o s) satisfies the same condition. Thus, we can give the
following definition.

Definition 2 The generalized kth-order unified Hamilton-Jacobi problem for Xpp consists in
finding a section s € I'(p) satisfying the following conditions:
1. The submanifold Im(s) < W is contained in W,.

2. If y: R — T*=1Q is an integral curve of Tpo Xpgos € X(TF1Q), then soy: R — W is
an integral curve of Xrg, that is

TpoXpgosoy=+4= Xrgo(soy)=507.
Proposition 2 The following assertions on a section s € I'(p) are equivalent.

1. s is a solution to the generalized kth-order unified Hamilton-Jacobi problem.

2. The submanifold Im(s) < W is invariant under the flow of the vector field X solution
to equation ([{l) (that is, Xpg is tangent to the submanifold Tm(s)).

3. The section s satisfies the dynamical equation i(X)(s*Q) = d(s*H), where X = TpoXppos
is the vector field associated to s.

(Proof) The proof is analogous to that of Proposition 6 and Theorem 2 in [2]. [ |

Coordinate expression. Let (qé‘) be a set of local coordinates in @), with 1 < A < n, and
(@ a1 D% p'z_l) the induced local coordinates in W (see [7] for details). Then, local
coordinates in VW adapted to the p-bundle structure are (q{‘,qf,pi‘), where 0 < 7 < k — 1,

k < j <2k —1. Hence, a section s € T'(p) is given locally by s(¢') = (¢, 83»4, a'y), where s

7
7 %A

are local functions in TF~1Q.

From Proposition [2] an equivalent condition for a section s € I'(p) to be a solution of the
generalized kth-order unified Hamilton-Jacobi problem is that the dynamical vector field X g is
tangent to the submanifold Im(s) < W, which is defined locally by the constraints q]A — sf =0
and pf4 — af4 = 0. From [7], the vector field X solution to equation () is given locally by

2k—2
o . 8 oL b oL .\ o
XLy = a +F + ( -7 > —
lz% Togt T dagy  dggt o \ogt "M ) ol
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where F4 are the functions solution to the following system of n equations
2L & oL
~)MFP —dr (8 +) (- =0.
(—=1)%( 7(%21-1) Z?Ban e oA

Hence, requiring X7, H(q] — 5 4)=0and X Lu(py — ay) = 0 we obtain the following system of
2kn partial differential equa‘mons on Im(s)

A A A A
s — g 9si _ 95 —0: FA_,B Oshp_1 Bas2k—1_0
T ogP Mog, TagP Tt agf (3)
oL B Z?ozA_ 3894 . aﬁ—o/—l—qB aaA_SB aaA 0
% T ogB oK oqP "ot A TloggB TR 9gP
This is a system of 2kn partial differential equations with 2kn unknown function 33-4, a'y. Hence,

a section s € I'(p) is a solution to the generalized kth-order Lagrangian-Hamiltonian Hamilton-
Jacobi problem if, and only if, its component functions satisfy the local equations (3.

3.2 The Hamilton-Jacobi problem

In general, to solve the generalized kth-order Hamilton-Jacobi problem is a difficult task since
we must find kn-dimensional submanifolds of VW contained in the submanifold W, and invariant
by the dynamical vector field X ;. Hence, it is convenient to consider a less general problem
and require some additional conditions to the section s € I'(p) [1I,[2].

Definition 3 The kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem consists in find-
ing sections s € I'(p) solution to the generalized kth-order unified Hamilton-Jacobi problem such
that s*Q0 = 0. Such a section is called a solution to the kth-order Lagrangian-Hamiltonian
Hamilton-Jacobi problem.

From the definition of € 2?(W) we have
s*Q = s*(prowg_1) = (pryos) wi_1 -

Hence, s*Q = 0 if, and only if, (pryos)*wy—1 = 0. As ['(mm-1) = 21(TF71Q), the section
pryos € ['(mpi-1g) is a 1-form in Tk=1(Q, and from the properties of the tautological form 6j_;
of the cotangent bundle T*(T*~1Q) we have

(pryos)*wi—1 = (pryos)*(—dbi_1) = —d((pry 08)*0x_1) = —d(pry 0s)

Hence, the condition s*Q = 0 is equivalent to pryos € 2'(TF~1Q) being a closed 1-form.
Therefore, Definition [B] can be rewritten as follows.

Definition 4 The kth-order unified Hamilton-Jacobi problem consists in finding sections s €
I'(p) solution to the generalized kth-order unified Hamilton-Jacobi problem such that pryos is a
closed 1-form in TF1Q.

As a consequence of Proposition 2, we have the following result.

Proposition 3 The following assertions on a section s € T'(p) satisfying s*Q2 = 0 are equivalent:
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1. s is a solution to the kth-order unified Hamilton-Jacobi problem.
2. d(s*H) = 0.
3. Im(s) is an isotropic submanifold of W invariant by Xpp.

4. The integral curves of X with initial conditions in Im(s) project onto the integral curves
of X =TpoXppos.

Coordinate expression. From [7], the Hamiltonian function in W has coordinate expression
H= qﬁlpg — L(qd, ... ,q;;‘). Thus, its differential is given locally by

oL . oc .
dH = ——Adq(‘;‘ + <pA - 8—‘4) dqﬁ_l + q{ildpA .
9i+1

Hence, the condition d(s*H) = 0 in Proposition B holds if, and only if, the following kn partial
differential equations are satisfied

p Oajy +Sgaa’;—1 +ak_1as,§ B <az oL as£> _
g dqs! Bog \0gt  9qP g ’ )
g Odly N p0akt ot o1 0P <8£ oL 88?) W
q; s a a -

ogt Tt agt A TP agt \ogt T 0P dgf!

9

where 1 <[l <k —1.

Equivalently, we can require the 1-form pros € £2'(T*~1Q) to be closed, that is, d(pros) = 0.
Locally, this condition reads

daly A daly ,
- —2 =0 =0,ifA#+B 5
8qu anA 9B ifA# (5)

(2

Therefore, a section s € I'(p) is a solution to the kth-order Lagrangian-Hamiltonian Hamilton-
Jacobi problem if, and only if, the local functions 83—4, o'y satisfy the system of partial differential
equations given by [Bl) and (), or, equivalently ([B) and (Bl). Observe that the system of partial

differential equations may not be C*°(U)-linearly independent.

3.3 Relation with the Lagrangian and Hamiltonian formalisms

Finally, we state the relation between the solutions of the Hamilton-Jacobi problem in the unified
formalism and the solutions of the problem in the Lagrangian and Hamiltonian settings given

in [3].
Theorem 1 Let £ € C°(T*Q) be a hyperregular Lagrangian function.

1. If s € I'(p) is a solution to the (generalized) kth-order Lagrangian-Hamiltonian Hamilton-
Jacobi problem, then the sections sy = prjos € F(pik__ll) and o = pryos € YTF1Q)
are solutions to the (generalized) kth-order Lagrangian and Hamiltonian Hamilton-Jacobi
problems, respectively.
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2. If sy € F(pik 1Y) is a solution to the (generalized) kth-order Lagrangian Hamilton-Jacobi
problem, then s = j, o pt; ' o sz € T'(p) is a solution to the (generalized) kth-order
Lagrangian- Hamiltonian Hamilton-Jacobi problem.

If a € QYT*1Q)) is a solution to the (generalized) kth-order Hamiltonian Hamilton-
Jacobi problem, then s = j, 0Pty o a € I'(p)) is a solution to the (generalized) kth-order
Lagrangian- Hamiltonian Hamilton-Jacobi problem.

(Proof) The proof of the first item follows the same patterns that the proof of Theorem
1 in [3]. For the second item, the key point is to take into account that the maps pry: W —
T?*=1Q and pTy: W — T*(TF71Q) are diffeomorphisms, and that the dynamical vector field
X € X(W) solution to equation () is tangent to W,, and therefore is j,-related to a vector
field X, € X(W,) for which it is possible to state an equivalent Hamilton-Jacobi problem. ]

3.4 An example: A (homogeneous) deformed elastic cylindrical beam with
fixed ends

Consider a deformed elastic cylindrical beam with both ends fixed (see [7] and references therein).
The problem is to determinate its shape; that is, the width of every section transversal to the
axis. This gives rise to a 1-dimensional second-order dynamical system, which is autonomous if
we require the beam to be homogeneous. Let @ be the 1-dimensional smooth manifold modeling
the configuration space of the system with local coordinate (¢gp). Then, in the natural coordinates
of T?Q, the Lagrangian function for this system is

1

L(q0,q1,q2) = 5#61% + pqo0 ,

where p,p € R are constants, and g # 0. This a regular Lagrangian function because the

< >

has maximum rank equal to 1 when p # 0.

In the induced natural coordinates (qo, q1,q2,q3,p", p') of W, the coordinate expressions of
the presymplectic form Q = prj w; € 22(W) and the Hamiltonian function H = C— £ € C*®(W)
are

1
Q=dgo Adp® +day Adp' 5 H = qp” +qap" — Spa3 — pao.

Thus, the semispray of type 1 Xz € X(W) solution to the dynamical equation (1) and tangent
to the submanifold W, = graph(FL) < W has the following coordinate expression

ozl bl sl P00 00
(hﬁ Q20q1 Q38q2 p0q3 ap P opt-

In the following we state the equations for the (generalized) Lagrangian-Hamilonian Hamilton-
Jacobi problem for this dynamical system.

In the generalized Lagrangian-Hamiltonian Hamilton-Jacobi problem we look for sections
s € I'(p), given locally by s(qo, q1) = (qo, q1, 52, 53, a”, '), such that the submanifold Im(s) < W
is invariant under the flow of Xpg € X(W). Since the constraints defining locally Im(s) are
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g2 —52=0,q3—53 =0, p" —a’ =0, p! —a! =0, then the equations for the section s are

032 0s2 0 p 0s3 083 0
S3—q1=—— 89— =0; —— —q=—— — S9— =
TN g w Mg Pog
da? da? 0 oat oat

iy ——825—=0; —a" —q— — 53— =0.
P dqo Iq dqo oq

For the Lagrangian-Hamiltonian Hamilton-Jacobi problem, we require in addition the section

s € T(pYY) to satisfy s*Q = 0 or, equivalently, the form pryos € 2'(TQ) to be closed. In
coordinates, if s = (qo, q1, 2, 3, a%, al), then the 1-form pr, os is given by pry 0s = a’dgo+aldg;.
Hence, a section s € I'(p) solution to the unified Hamilton-Jacobi problem for this system must
satisfy the following system of 5 partial differential equations

o220 g p Oss Oss_ 0al 0ol
dqo oq It dq0 oq dq0  Oq
da’ da’ o oot oot
P—Q1a—qo—328—ql20;—a _Q18—_S28—ql_0
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