382 research outputs found

    Automatic design of mechanical metamaterial actuators

    Get PDF
    Mechanical metamaterial actuators achieve pre-determined input\u2013output operations exploiting architectural features encoded within a single 3D printed element, thus removing the need for assembling different structural components. Despite the rapid progress in the field, there is still a need for efficient strategies to optimize metamaterial design for a variety of functions. We present a computational method for the automatic design of mechanical metamaterial actuators that combines a reinforced Monte Carlo method with discrete element simulations. 3D printing of selected mechanical metamaterial actuators shows that the machine-generated structures can reach high efficiency, exceeding human-designed structures. We also show that it is possible to design efficient actuators by training a deep neural network which is then able to predict the efficiency from the image of a structure and to identify its functional regions. The elementary actuators devised here can be combined to produce metamaterial machines of arbitrary complexity for countless engineering applications

    Co-circulation of a novel phlebovirus and Massilia virus in sandflies, Portugal

    Get PDF
    Free PMC Article: www.ncbi.nlm.nih.gov/pmc/articles/pmid/26497645/Background: In Portugal, entomological surveys to detect phleboviruses in their natural vectors have not been performed so far. Thus, the aims of the present study were to detect, isolate and characterize phleboviruses in sandfly populations of Portugal. Findings: From May to October 2007–2008, 896 female sandflies were trapped in Arrábida region, located on the southwest coast of Portugal. Phlebovirus RNA was detected by using a pan-phlebovirus RT-PCR in 4 out of 34 Phlebotomus perniciosus pools. Direct sequencing of the amplicons showed that 2 samples exhibited 72 % nucleotide identity with Arbia virus, and two showed 96 % nucleotide identity with Massilia virus. The Arbia-like virus (named Alcube virus) was isolated in cell culture and complete genomic sequences of one Alcube and two Massila viruses were determined using next-generation sequencing technology. Phylogenetic analysis demonstrated that Alcube virus clustered with members of the Salehabad virus species complex. Within this clade, Alcube virus forms a monophyletic lineage with the Arbia, Salehabad and Adana viruses sharing a common ancestor. Arbia virus has been identified as the most closely related virus with 20-28 % nucleotide and 10-27 % amino acid divergences depending on the analysed segment. Conclusions: We have provided genetic evidence for the circulation of a novel phlebovirus species named Alcube virus in Ph. perniciosus and co-circulation of Massilia virus, in Arrábida region, southwest of Portugal. Further epidemiological investigations and surveillance for sandfly-borne phleboviruses in Portugal are needed to elucidate their medical importance.This work was partially funded by the FCT project “New arboviruses isolated in Portugal. Risk assessment and public health application" (PTDC/SAU-SAP/119199/2010)

    Dual-arm dexterous mobile manipulator with new omnidirectional wheels

    Full text link
    [ES] Este artículo describe un manipulador móvil, bimanual y con capacidad de manipulación diestra denominado MADAR (de Mobile Anthropomorphic Dual-Arm Robot). Básicamente puede dividirse en dos partes, una base móvil y una estructura superior portando dos brazos en configuración antropomorfa con manos mecánicas diestras equipadas con sensores táctiles. La base, completamente de desarrollo propio, es de forma circular y tiene tres ruedas con un diseño novedoso que permiten una movilidad omnidireccional. La estructura superior integra elementos comerciales, como los brazos, las manos y distintos sensores, que han sido adaptados para su funcionamiento conjunto. El artículo incluye tanto la descripción de los principales elementos del hardware como del software desarrollado para su control y uso.[EN] This article describes a mobile manipulator, equipped with two arms with dexterous capabilities, called MADAR (from Mobile Anthropomorphic Dual-Arm Robot). Basically, the manipulator can be divided into two parts, a mobile base and an upper structure that includes two arms with dexterous hands equipped with tactile sensors. The base, completely self-developed, is circular in shape and has three wheels with a novel design that allow omnidirectional mobility. The upper structure integrates commercial elements, such as the arms, the hands and dierent sensors. The article includes the description of the main elements of the hardware and the software developed for its control and use.Este trabajo ha sido parcialmente financiado por el gobierno español mediante el proyecto DPI2016-80077-R.Suárez, R.; Palomo-Avellaneda, L.; Martínez, J.; Clos, D.; García, N. (2020). Manipulador móvil, bibrazo y diestro con nuevas ruedas omnidireccionales. Revista Iberoamericana de Automática e Informática industrial. 17(1):10-21. https://doi.org/10.4995/riai.2019.11422OJS1021171ABB, Jan. 2018. YuMi. www.abb.com/yumi, visitado el 2019/02/12.Adascalitei, F., Doroftei, I., Jan. 2011. Practical applications for mobile robots based on mecanum wheels - a systematic survey. Romanian Review Precision Mechanics, Optics and Mechatronics, 21-29.Adept, Jan. 2018. Pioneer manipulator. https://www.generationrobots.com/media/PioneerManipulatordatasheet.pdf.Albu-Schöffer, A., Haddadin, S., Ott, C., Stemmer, A., Wimböck, T., Hirzinger, G., May 2007. The DLR lightweight robot: Design and control concepts for robots in human environments. Industrial Robot: An Int. J. 34 (5), 376-385. https://doi.org/10.1108/01439910710774386Andersen, T., 2015. Optimizing the Universal Robots ROS driver. Tech. rep., Technical University of Denmark, Department of Electrical Engineering.Arthur Ketels and M.J.G. van den Molengraft, 2014. Open ethercat society: Home of soem and soes. openethercatsociety.github.io, visitado el 2019/02/12.Batlle, J., Barjau, A., 2009. Holonomy in mobile robots. Robotics and Auton. Systems 57 (4), 433 - 440. https://doi.org/10.1016/j.robot.2008.06.001Batlle, J., Font-Llagunes, J., Barjau, A., Jan. 2010. Calibration for mobile robots with an invariant Jacobian. Robotics and Auton. Systems 58, 10-15. https://doi.org/10.1016/j.robot.2009.09.002Bischoff, R., Huggenberger, U., Prassler, E., May 2011. KUKA youBot - A mobile manipulator for research and education. In: Proc. IEEE Int. Conf. Robotics and Automation. pp. 1-4. https://doi.org/10.1109/ICRA.2011.5980575Bridgwater, L., A. Ihrke, C., Diftler, M., Abdallah, M., Radford, N., Rogers, J., Yayathi, S., S. Askew, R., M. Linn, D., 05 2012. The robonaut 2 handdesigned to do work with tools. In: Proceedings - IEEE International Conference on Robotics and Automation. pp. 3425-3430. https://doi.org/10.1109/ICRA.2012.6224772Butterfass, J., Fischer, M., Grebenstein, M., Haidacher, S., Hirzinger, G., 2004. Design and experiences with DLR hand II. In: Proc. of World Automation Congress. Vol. 15. pp. 105-110.Clos, D., Martı́nez, J., 2015. Omnidirectional wheel, and omnidirectional mobile device. World Intellectual Property Organization (Patent WO 2015/121521 A1, lens.org/084-354-767-767-633).Company, S. R., 2015. Shadow Robot Company. Shadow Dexterous Hand. [Online] http://www.shadowrobot.com.Dean-Leon, E., Pierce, B., Bergner, F., Mittendorfer, P., Ramirez-Amaro, K., Burger, W., Cheng, G., 2017. TOMM: Tactile omnidirectional mobile manipulator. In: Proc. IEEE Int. Conf. Robotics and Autom. pp. 2441-2447. https://doi.org/10.1109/ICRA.2017.7989284Fentanes, J. P., Zalama, E., Garc'ıa-Bermejo, J. G., 2012. Plataforma robótica para tareas de reconstrucci'on tridimensional de entornos exteriores. Revista Iberoamericana de Automática e Informática industrial 9 (1), 81-82. https://doi.org/10.1016/j.riai.2011.11.009Ferriere, L., Raucent, B., May 1998. ROLLMOBS, a new universal wheel concept. In: Proc. IEEE Int. Conf. Robotics and Automation. Vol. 3. pp. 1877-1882.Fitzgerald, C., Apr. 2013. Developing baxter. In: Proc. IEEE Int. Conf. Technologies for Practical Robot Appl. pp. 1-6. https://doi.org/10.1109/TePRA.2013.6556344Garcı́a, N., Rosell, J., Suárez, R., 2017. Motion planning by demonstration with human-likeness evaluation for dual-arm robots. IEEE Trans. Systems, Man, and Cybernetics: Systems PP (99), 1-10. https://doi.org/10.1109/TSMC.2017.2756856Gerum, P., 2004. Xenomai-Implementing a RTOS emulation framework on GNU/Linux. https://xenomai.org/documentation/xenomai-2.1/pdf/xenomai.pdf, visitado el 2019/05/31.Hermann, A., Sun, J., Xue, Z., Rühl, S. W., Oberländer, J., Roennau, A., Zöllner, J. M., Dillmann, R., July 2013. Hardware and software architecture of the bimanual mobile manipulation robot hollie and its actuated upper body. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Wollongong, NSW, Australia, pp. 286-292. https://doi.org/10.1109/AIM.2013.6584106IOC Robotics Lab, 2014. SOEM for RTNET and Xenomai. github.com/iocroblab/soem, visitado el 2019/02/12.Khatib, O., 1999. Mobile manipulation: The robotic as-sistant. Robotics and Auton. Systems 26 (2), 175 - 183. https://doi.org/10.1016/S0921-8890(98)00067-0Kröger, T., May 2011. Opening the door to new sensor-based robot applications - The Reflexxes Motion Libraries. In: IEEE Int. Conf. Robotics and Automation. pp. 1-4. https://doi.org/10.1109/ICRA.2011.5980578Kuka Robotics, 2018. KMR iiwa. www.kuka.com/en-us/products/mobility/mobile-robot-systems/kmr-iiwa, visitado el 2019/02/12.Kurazume, R., Hasegawa, T., Oct 2006. A new index of serial-link manipulator performance combining dynamic manipulability and manipulating force ellipsoids. IEEE Trans. Robotics 22 (5), 1022-1028. https://doi.org/10.1109/TRO.2006.878949Lind, M., Schrimpf, J., Ulleberg, T., 2010. Open real-time robot controller framework. In: Proc. CIRP Conf. Assembly Technology and Systems - Responsive, customer demand driven, adaptive assembly. pp. 13-18.Montaño, A., Suárez, R., 2015. Unknown object manipulation based on tactile information. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems. pp. 5642-5647. https://doi.org/10.1109/IROS.2015.7354178Montaño, A., Suárez, R., Oct 2018a. Improving grasping forces during the manipulation of unknown objects. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 3490-3495. https://doi.org/10.1109/IROS.2018.8593655Montaño, A., Suárez, R., 2018b. Manipulation of unknown objects to improve the grasp quality using tactile information. Sensors 18 (5-1412). https://doi.org/10.3390/s18051412PAL Robotics, Jan. 2018. Tiago. tiago.pal-robotics.com, visitado el 2019/02/12.Pozyx NV, 2018. Creator Pozyx. www.pozyx.io, visitado el 2019/02/12.Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A. Y., 2009. Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software.Reitelshöfer, S., Ramer, C., Gräf, D., Matern, F., Franke, J., Dec. 2014. Combining a collaborative robot and a lightweight Jamming-Gripper to realize an intuitively to use and flexible co-worker. In: Proc. IEEE/SICE Int. Symp. System Integration. pp. 1-5. https://doi.org/10.1109/SII.2014.7028001Roa, M., Suárez, R., Cornellà, J., 2008. Medidas de calidad para la prensión de objetos. Revista Iberoamericana de Automática e Informatica Industrial, RIAI 5 (1), 66-82. https://doi.org/10.1016/S1697-7912(08)70124-9Rojas-de-Silva, A., Suárez, R., 2016. Grasping bulky objects with two anthropomorphic hands. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems. pp. 877-884. https://doi.org/10.1109/IROS.2016.7759154ROS-I Consortium, 2012. ROS-Industrial. rosindustrial.org/, visitado el 2019/02/12.Rosell, J., Pérez, A., Aliakbar, A., Muhayyuddin, Palomo, L., Garcı́a, N., Sept. 2014. The Kautham Project: A teaching and research tool for robot motion planning. In: Proc. IEEE Int. Conf. Emerging Technologies and Factory Automation. https://doi.org/10.1109/ETFA.2014.7005143Runge, G., Borchert, G., Raatz, A., Sept 2014. Design of a holonomic ball drive for mobile robots. In: Proc. IEEE/ASME Int. Conf. Mechatronic and Embedded Systems and Applications. pp. 1-6. https://doi.org/10.1109/MESA.2014.6935568Sadun, A. S., Jalani, J., Jamil, F., Sep. 2016. Grasping analysis for a 3-finger adaptive robot gripper. In: 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA). pp. 1-6. https://doi.org/10.1109/ROMA.2016.7847806SCHUNK GmbH, 2011. Shunk dexterous hand - SDH2. schunk.com/us_en/gripping-systems/series/sdh/, visitado el 2019/02/12.SICK Vertriebs-GmbH, 2018. TiM5xx. www.sick.com/de/en/detection-and-ranging-solutions/2d-lidar-sensors/tim5xx/tim561-2050101/p/p369446, visitado el 2019/02/12.SimLab-Wonik Robotics, Set. 2012. Allegro hand is a low-cost and highly adaptive robotic hand. www.simlab.co.kr/Allegro-Hand.htm, visitadoel 2019/02/12.Suárez, R., Grosch, P., Jul 2004. Dexterous robotic hand ma-i, sofware and hardware architecture. In: Intelligent Manipulation and Grasping International Conference, IMG'04. pp. 91-96.Suárez, R., Rosell, J., Garcı́a, N., May 2015. Using synergies in dual-arm manipulation tasks. In: Proc. IEEE Int. Conf. Robotics and Automation. pp. 5655-5661. https://doi.org/10.1109/ICRA.2015.7139991Suárez, R., Palomo-Avellaneda, L., Martinez, J., Clos, D., Garcı́a, N., 2018.Development of a dexterous dual-arm omnidirectional mobile manipulator. IFAC-PapersOnLine 51 (22), 126 - 131, 12th IFAC Symposium on Robot Control SYROCO 2018. https://doi.org/10.1016/j.ifacol.2018.11.529SYNTENET, 2014. Projecto: Sincronización y teleoperación con interacción visual 3d de redes de manipuladores móviles y robots con articulaciones flexibles. Referencia: DPI2011-22471, Perido: 01/01/2012 al 31/12/2014, IP: Luis Basañez, IOC-UPC.Universal Robots, Feb. 2019. Ur5 collaborative robot arm. www.universal-robots.com/products/ur5-robot, visitado el 2019/02/12.Weiss Robotics, 2015. WTS-FT; Weiss Robotics GmbH&Co.KG. www.weiss-robotics.com/en/produkte/tactile-sensing/wts-ft-en/, visitado el 2019/02/12.Willow Garage, 2010. Willow Garage PR2. http://www.willowgarage.com/pages/pr2/overview, visitado el 2019/06/06

    Pentraxins and Fc Receptor-Mediated Immune Responses

    Get PDF
    C-reactive protein (CRP) is a member of the pentraxin family of proteins. These proteins are highly conserved over the course of evolution being present as far back as 250 million years ago. Mammalian pentraxins are characterized by the presence of five identical non-covalently linked subunits. Each subunit has a structurally conserved site for calcium-dependent ligand binding. The biological activities of the pentraxins established over many years include the ability to mediate opsonization for phagocytosis and complement activation. Pentraxins have an important role in protection from infection from pathogenic bacteria, and regulation of the inflammatory response. It was recognized early on that some of these functions are mediated by activation of the classical complement pathway through C1q. However, experimental evidence suggested that cellular receptors for pentraxins also play a role in phagocytosis. More recent experimental evidence indicates a direct link between pentraxins and Fc receptors. The Fc receptors were first identified as the major receptors for immunoglobulins. The avidity of the interaction between IgG complexes and Fc receptors is greatly enhanced when multivalent ligands interact with the IgG binding sites and activation of signaling pathways requires Fc receptor crosslinking. Human pentraxins bind and activate human and mouse IgG receptors, FcγRI and FcγRII, and the human IgA receptor, FcαRI. The affinities of the interactions between Fc receptors and pentraxins in solution and on cell surfaces are similar to antibody binding to low affinity Fc receptors. Crystallographic and mutagenesis studies have defined the structural features of these interactions and determined the stoichiometry of binding as one-to-one. Pentraxin aggregation or binding to multivalent ligands increases the avidity of binding and results in activation of these receptors for phagocytosis and cytokine synthesis. This review will discuss the structural and functional characteristics of pentraxin Fc receptor interactions and their implications for host defense and inflammation

    Synthesis, biological profiling and mechanistic studies of 4-aminoquinoline-based heterodimeric compounds with dual trypanocidal–antiplasmodial activity.

    Get PDF
    YesDual submicromolar trypanocidal–antiplasmodial compounds have been identified by screening and chemical synthesis of 4-aminoquinoline-based heterodimeric compounds of three different structural classes. In Trypanosoma brucei, inhibition of the enzyme trypanothione reductase seems to be involved in the potent trypanocidal activity of these heterodimers, although it is probably not the main biological target. Regarding antiplasmodial activity, the heterodimers seem to share the mode of action of the antimalarial drug chloroquine, which involves inhibition of the haem detoxification process. Interestingly, all of these heterodimers display good brain permeabilities, thereby being potentially useful for late stage human African trypanosomiasis. Future optimization of these compounds should focus mainly on decreasing cytotoxicity and acetylcholinesterase inhibitory activity

    Preoperative systemic inflammation predicts postoperative infectious complications in patients undergoing curative resection for colorectal cancer

    Get PDF
    The presence of systemic inflammation before surgery, as evidenced by the glasgow prognostic score (mGPS), predicts poor long-term survival in colorectal cancer. The aim was to examine the relationship between the preoperative mGPS and the development of postoperative complications in patients undergoing potentially curative resection for colorectal cancer. Patients (n=455) who underwent potentially curative resections between 2003 and 2007 were assessed consecutively, and details were recorded in a database. The majority of patients presented for elective surgery (85%) were over the age of 65 years (70%), were male (58%), were deprived (53%), and had TNM stage I/II disease (61%), had preoperative haemoglobin (56%), white cell count (87%) and mGPS 0 (58%) in the normal range. After surgery, 86 (19%) patients developed a postoperative complication; 70 (81%) of which were infectious complications. On multivariate analysis, peritoneal soiling (P<0.01), elevated preoperative white cell count (P<0.05) and mGPS (P<0.01) were independently associated with increased risk of developing a postoperative infection. In elective patients, only the mGPS (OR=1.75, 95% CI=1.17-2.63, P=0.007) was significantly associated with increased risk of developing a postoperative infection. Preoperative elevated mGPS predicts increased postoperative infectious complications in patients undergoing potentially curative resection for colorectal cancer

    A weighted belief-propagation algorithm to estimate volume-related properties of random polytopes

    Full text link
    In this work we introduce a novel weighted message-passing algorithm based on the cavity method to estimate volume-related properties of random polytopes, properties which are relevant in various research fields ranging from metabolic networks, to neural networks, to compressed sensing. Unlike the usual approach consisting in approximating the real-valued cavity marginal distributions by a few parameters, we propose an algorithm to faithfully represent the entire marginal distribution. We explain various alternatives to implement the algorithm and benchmark the theoretical findings by showing concrete applications to random polytopes. The results obtained with our approach are found to be in very good agreement with the estimates produced by the Hit-and-Run algorithm, known to produce uniform sampling.Comment: 17 pages, 6 figure

    Celio (\u2705), Orkand (\u2707) Named Up and Coming Leaders

    Get PDF
    BackgroundAlthough auditory verbal hallucinations (AVH) are a core symptom of schizophrenia, they also occur in non-psychotic individuals, in the absence of other psychotic, affective, cognitive and negative symptoms. AVH have been hypothesized to result from deviant integration of inferior frontal, parahippocampal and superior temporal brain areas. However, a direct link between dysfunctional connectivity and AVH has not yet been established. To determine whether hallucinations are indeed related to aberrant connectivity, AVH should be studied in isolation, for example in non-psychotic individuals with AVH.MethodResting-state connectivity was investigated in 25 non-psychotic subjects with AVH and 25 matched control subjects using seed regression analysis with the (1) left and (2) right inferior frontal, (3) left and (4) right superior temporal and (5) left parahippocampal areas as the seed regions. To correct for cardiorespiratory (CR) pulsatility rhythms in the functional magnetic resonance imaging (fMRI) data, heartbeat and respiration were monitored during scanning and the fMRI data were corrected for these rhythms using the image-based method for retrospective correction of physiological motion effects RETROICOR.ResultsIn comparison with the control group, non-psychotic individuals with AVH showed increased connectivity between the left and the right superior temporal regions and also between the left parahippocampal region and the left inferior frontal gyrus. Moreover, this group did not show a negative correlation between the left superior temporal region and the right inferior frontal region, as was observed in the healthy control group.ConclusionsAberrant connectivity of frontal, parahippocampal and superior temporal brain areas can be specifically related to the predisposition to hallucinate in the auditory domain.</jats:sec
    corecore