424 research outputs found

    Partial flap avulsion following refractive surgery

    Get PDF

    Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions

    Get PDF
    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56–poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA–PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20–100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56–poly(benzyl methacrylate)300 [PGMA56–PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56–PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39–poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39–PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral attenuation

    Observation of the Askaryan Effect: Coherent Microwave Cherenkov Emission from Charge Asymmetry in High Energy Particle Cascades

    Get PDF
    We present the first direct experimental evidence for the charge excess in high energy particle showers predicted nearly 40 years ago by Askaryan. We directed bremsstrahlung photons from picosecond pulses of 28.5 GeV electrons at the SLAC Final Focus Test Beam facility into a 3.5 ton silica sand target, producing electromagnetic showers several meters long. A series of antennas spanning 0.3 to 6 GHz were used to detect strong, sub-nanosecond radio frequency pulses produced whenever a shower was present. The measured electric field strengths are consistent with a completely coherent radiation process. The pulses show 100% linear polarization, consistent with the expectations of Cherenkov radiation. The field strength versus depth closely follows the expected particle number density profile of the cascade, consistent with emission from excess charge distributed along the shower. These measurements therefore provide strong support for experiments designed to detect high energy cosmic rays and neutrinos via coherent radio emission from their cascades.Comment: 10 pages, 4 figures. Submitted to Phys. Rev. Let

    Reverse quantum state engineering using electronic feedback loops

    Get PDF
    We propose an all-electronic technique to manipulate and control interacting quantum systems by unitary single-jump feedback conditioned on the outcome of a capacitively coupled electrometer and in particular a single-electron transistor. We provide a general scheme to stabilize pure states in the quantum system and employ an effective Hamiltonian method for the quantum master equation to elaborate on the nature of stabilizable states and the conditions under which state purification can be achieved. The state engineering within the quantum feedback scheme is shown to be linked with the solution of an inverse eigenvalue problem. Two applications of the feedback scheme are presented in detail: (i) stabilization of delocalized pure states in a single charge qubit and (ii) entanglement stabilization in two coupled charge qubits. In the latter example we demonstrate the stabilization of a maximally entangled Bell state for certain detector positions and local feedback operations.Comment: 23 pages, 6 figures, to be published by New Journal of Physics (2013

    Nanofibrous scaffolds support a 3D in vitro permeability model of the human intestinal epitheleum

    Get PDF
    Advances in drug research not only depend on high throughput screening to evaluate large numbers of lead compounds but also on the development of in vitro models which can simulate human tissues in terms of drug permeability and functions. Potential failures, such as poor permeability or interaction with efflux drug transporters, can be identified in epithelial Caco-2 monolayer models and can impact a drug candidate’s progression onto the next stages of the drug development process. Whilst monolayer models demonstrate reasonably good prediction of in vivo permeability for some compounds, more developed in vitro tools are needed to assess new entities that enable closer in vivo in vitro correlation. In this study, an in vitro model of the human intestinal epithelium was developed by utilizing nanofibers, fabricated using electrospinning, to mimic the structure of the basement membrane. We assessed Caco-2 cell response to these materials and investigated the physiological properties of these cells cultured on the fibrous supports, focusing on barrier integrity and drug-permeability properties. The obtained data illustrate that 2D Caco-2 Transwell® cultures exhibit artificially high trans-epithelial electrical resistance (TEER) compared to cells cultured on the 3D nanofibrous scaffolds which show TEER values similar to ex vivo porcine tissue (also measured in this study). Furthermore, our results demonstrate that the 3D nanofibrous scaffolds influence the barrier integrity of the Caco-2 monolayer to confer drug-absorption properties that more closely mimic native gut tissue particularly for studying passive epithelial transport. We propose that this 3D model is a suitable in vitro model for investigating drug absorption and intestinal metabolism

    Nicotinamide alone accelerates the conversion of mouse embryonic stem cells into mature neuronal populations.

    Get PDF
    Vitamin B3 has been shown to play an important role during embryogenesis. Specifically, there is growing evidence that nicotinamide, the biologically active form of vitamin B3, plays a critical role as a morphogen in the differentiation of stem cells to mature cell phenotypes, including those of the central nervous system (CNS). Detailed knowledge of the action of small molecules during neuronal differentiation is not only critical for uncovering mechanisms underlying lineage-specification, but also to establish more effective differentiation protocols to obtain clinically relevant cells for regenerative therapies for neurodegenerative conditions such as Huntington's disease (HD). Thus, this study aimed to investigate the potential of nicotinamide to promote the conversion of stem cells to mature CNS neurons. METHODS: Nicotinamide was applied to differentiating mouse embryonic stem cells (mESC; Sox1GFP knock-in 46C cell line) during their conversion towards a neural fate. Cells were assessed for changes in their proliferation, differentiation and maturation; using immunocytochemistry and morphometric analysis methods. RESULTS: Results presented indicate that 10 mM nicotinamide, when added at the initial stages of differentiation, promoted accelerated progression of ESCs to a neural lineage in adherent monolayer cultures. By 14 days in vitro (DIV), early exposure to nicotinamide was shown to increase the numbers of differentiated βIII-tubulin-positive neurons. Nicotinamide decreased the proportion of pluripotent stem cells, concomitantly increasing numbers of neural progenitors at 4 DIV. These progenitors then underwent rapid conversion to neurons, observed by a reduction in Sox 1 expression and decreased numbers of neural progenitors in the cultures at 14 DIV. Furthermore, GABAergic neurons generated in the presence of nicotinamide showed increased maturity and complexity of neurites at 14 DIV. Therefore, addition of nicotinamide alone caused an accelerated passage of pluripotent cells through lineage specification and further to non-dividing mature neurons. CONCLUSIONS: Our results show that, within an optimal dose range, nicotinamide is able to singly and selectively direct the conversion of embryonic stem cells to mature neurons, and therefore may be a critical factor for normal brain development, thus supporting previous evidence of the fundamental role of vitamins and their metabolites during early CNS development. In addition, nicotinamide may offer a simple effective supplement to enhance the conversion of stem cells to clinically relevant neurons

    Gene-based analysis in HRC imputed genome wide association data identifies three novel genes for Alzheimer's disease.

    Get PDF
    Late onset Alzheimer's disease is the most common form of dementia for which about 30 susceptibility loci have been reported. The aim of the current study is to identify novel genes associated with Alzheimer's disease using the largest up-to-date reference single nucleotide polymorphism (SNP) panel, the most accurate imputation software and a novel gene-based analysis approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 million genotypes from 17,008 Alzheimer's cases and 37,154 controls. In addition to earlier reported genes, we detected three novel gene-wide significant loci PPARGC1A (p = 2.2 × 10-6), RORA (p = 7.4 × 10-7) and ZNF423 (p = 2.1 × 10-6). PPARGC1A and RORA are involved in circadian rhythm; circadian disturbances are one of the earliest symptoms of Alzheimer's disease. PPARGC1A is additionally linked to energy metabolism and the generation of amyloid beta plaques. RORA is involved in a variety of functions apart from circadian rhythm, such as cholesterol metabolism and inflammation. The ZNF423 gene resides in an Alzheimer's disease-specific protein network and is likely involved with centrosomes and DNA damage repair

    2-Acetyl­pyridinium bromanilate

    Get PDF
    In the crystal of the title mol­ecular salt (systematic name: 2-acetyl­pyridinium 2,5-dibromo-4-hydr­oxy-3,6-dioxocyclo­hexa-1,4-dienolate), C7H8NO+·C6HBr2O4 −, centrosymmetric rings consisting of two cations and two anions are formed, with the components linked by alternating O—H⋯O and N—H⋯O hydrogen bonds. Short O⋯Br contacts [3.243 (2) and 3.359 (2) Å] may help to consolidate the packing

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years
    corecore