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Abstract. We propose an all-electronic technique to manipulate and control
interacting quantum systems by unitary single-jump feedback conditioned on
the outcome of a capacitively coupled electrometer and, in particular, a single-
electron transistor. We provide a general scheme for stabilizing pure states in
the quantum system and use an effective Hamiltonian method for the quantum
master equation to elaborate on the nature of stabilizable states and the conditions
under which state purification can be achieved. The state engineering within the
quantum feedback scheme is shown to be linked with the solution of an inverse
eigenvalue problem. Two applications of the feedback scheme are presented
in detail: (i) stabilization of delocalized pure states in a single charge qubit
and (ii) entanglement stabilization in two coupled charge qubits. In the latter
example, we demonstrate the stabilization of a maximally entangled Bell state
for certain detector positions and local feedback operations.
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1. Introduction

Quantum feedback control is a promising scheme for the targeted manipulation of single
quantum systems in which information gained from a detector, which monitors a system, is
used to direct appropriate control forces acting back on the quantum system [1–10].

In solid-state systems, some experimental realizations of quantum feedback control
schemes have recently been reported [11–14]. These examples have in common that the
quantum system consists of a quantum two-level system (qubit) and the feedback loops are
realized all-electronically. Different types of qubits are in use: based on the proposal by Loss
and di Vincenzo [15], spin qubits consist of double quantum dots, where each dot is filled
with one electron [16, 17]; the two levels are represented by the singlet and one triplet of
the two-electron state. A widely used class of qubits utilizes the charge degree-of-freedom of
electrons. In superconducting charge qubits, the presence and absence of excess Cooper pairs
on a superconducting island form the two-state system [18]. A drawback of this design is its
sensitivity to charge noise, whereas the transmon qubit provides an improved version [19, 20].
Another charge qubit setup in use is the normal-conducting double quantum dot, where the
excess electron can occupy either of the dots forming a two-level system [21]. The latter type of
quantum system is the subject of the present study.

In all the above cases the current qubit state is read out by a capacitively coupled charge
detector (electrometer), where the current flow through the detector sensitively depends on the
qubit state [22, 23]. The quantum point contact is the ‘work horse’ among the charge detectors,
since it provides a broad linear working range. However, in this work we propose the two-state
single-electron transistor (SET) as a charge detector for three reasons: (i) its high sensitivity,
(ii) its low dimensionality (two charge states) and (iii) singular tunneling events to trigger
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feedback operations. Other detector versions are the metallic SET [24] or the radio-frequency
SET [25], which is used in superconducting devices.

A variety of objectives for quantum feedback control schemes is conceivable. The
reduction of decoherence [11], generation of persistent quantum coherent oscillations [13],
noise reduction in quantum transport [26], realization of an electronic Maxwell demon [27–29],
target state preparation [14], entanglement stabilization [30–34] or stabilization of pure
states [35–37] are some of them. The latter recently attracted some theoretical work [38–40],
where the feedback was assumed to be triggered not by photon emissions but by electron
jumps—this is the main subject of the present work.

We perform a systematic theoretical study of the electronic implementation of a feedback
scheme acting on a quantum system using an SET as the detector. Thereby the detector will be
considered as part of the system, which is a non-standard treatment—this enables the systematic
investigation of detector back-action and detector-induced dissipation. We will demonstrate that
the stabilizable pure states are eigenstates of the effective Hamiltonian, which is defined by the
quantum master equation for the coupled system–detector dynamics. It will be shown that the
feedback stabilization procedure defines an inverse eigenvalue problem, which enables a more
systematic way to obtain convenient feedback operations.

In the spirit of the above-mentioned experiments we will demonstrate the stabilization
of pure states in a single charge qubit for arbitrary system–detector couplings. Moreover,
inspired by a recent experimental demonstration of entanglement of electrostatically coupled
singlet–triplet qubits [41], we study the entanglement stabilization in two coupled charge qubits.

This paper is organized as follows. In section 2, we describe what is meant by ‘quantum
state engineering’ and why our feedback control scheme provides a reverse technique. Section 3
contains the general derivation of the feedback scheme with the introduction of the microscopic
model (3.1), the derivation of the equation of motion (3.2), the introduction of the effective
Hamiltonian approach (3.3) and the formulation of the inverse eigenvalue problem (3.4). In
section 4, we provide two examples of quantum systems for illustration purposes: a single
charge qubit (4.1) and two interacting charge qubits (4.2). The conclusions can be found in
section 5.

2. Quantum state engineering

The creation of quantum states which are temporally stable and robust against perturbations is
a major requirement for the advancement of quantum-based technologies.

One main technical issue deals with the continuous state detection, which typically leads
to the irreversible loss of quantum purity due to ongoing projective measurements. But also
the dissipative influence of the remaining environment constitutes a source of decoherence,
which one needs to avoid in the best case. However, at least the destructive (back-) action
of the detector can be suppressed or even reversed, e.g. by the application of the properly
processed detector signal on the quantum system as proposed theoretically by us for an all-
electronic setup [39]. Beyond that, this feedback method enables the stabilization of a set of
pure quantum states depending on the specific feedback scheme and parameters. (In contrast
to back-action and dissipation that modify the dynamics of a quantum system in a unitary or
non-unitary manner, respectively, feedback in our notion requires prior classical processing
of the detector signal and may thus be modified by the experimenter at any time.). So far
this procedure has not really been systematic—for application purposes in state engineering,
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however, a clearer instruction will be necessary. In this work, we provide such a sequence of
steps that the experimenter or quantum engineer can follow in order to realize our feedback
method.

The usual way to generate a quantum steady state induces the solution of an eigenvalue
problem for closed systems. Alternatively, one solves, e.g., the steady-state version of the
quantum master equation for dissipative systems. Either the Hamiltonian operator or the
Liouvillian super-operator is presumed to be known. Our proposed feedback scheme starts with
a given system–detector set-up and seeks the corresponding control action that drives the system
to one of the allowed target states. Similar reverse ansätze can be found for dissipative quantum
state engineering [42–47], for projective measurements [48] and for feedback [49, 50].

The following principal steps need to be performed:

1. What type of states can be stabilized? ⇔ Compute the spectrum of the effective
Hamiltonian (equation (11) in section 3.3) of the system with a detector and without
control. Note that the eigenstates of the effective Hamiltonian are not equal to those of
the system Hamiltonian without detection.

2. Define an appropriate target state ⇔ Choose one of the eigenstates.

3. Compute the feedback operation which yields the target ⇔ Insert the eigenstate into
an inverse eigenvalue problem and compute the corresponding (feedback) super-operator
(equation (23) in section 3.4)).

In the next section, we will provide the (mathematical and physical) details of this procedure.

3. The feedback scheme

3.1. Hamiltonian

The total Hamiltonian reads

Ĥ = Ĥ Q + Ĥ E + Ĥ D + Ĥ C, (1)

where Ĥ Q describes a quantum system (Q) to be stabilized. We will make a particular choice
for our continuously operating detector: we employ an SET with its standard Hamiltonian

Ĥ D = Ĥ SET = εd d̂†d̂ +
∑

k,α=S,D

[
εkα ĉ†

kα ĉkα + (tkα ĉ†
kαd̂ + h.c.)

]
, (2)

where d̂†/d̂ denotes the creation/annihilation operator of the SET state with level energy εd . The
kth mode of the electronic source/drain lead (α = S/D) is created/annihilated with operator
ĉ†

kα/ĉkα and has the energy εkα. The coupling between SET level and contact modes is given
by the tunnel matrix element tkα. The advantage of this choice for the theoretical treatment is
that this type of detector possesses only two degrees of freedom after tracing out the electronic
leads. The coupling between Q and the SET is assumed to be

Ĥ C = d̂†d̂ ⊗ X̂ , (3)

where X̂ consists of operators acting solely in Q (see below).
The term Ĥ E = Ĥ B + Ĥ I describes an additional environment of Q, where Ĥ B is the bath

Hamiltonian (e.g. phonons) and Ĥ I provides its interaction with Q. For the sake of generality
we will not specify it further at this stage.
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3.2. Equation of motion

The standard Born–Markov approximation [51, 52] for weak coupling of the SET in the infinite
bias limit and of the quantum system with a bath yields the Lindblad-type equation of motion
for the density matrix of the system (h̄ = 1):

d

dt
ρ̂(t)= −i[Ĥ sys, ρ̂(t)] −

1

2

∑
α=E/S/D

[
{L̂†

α L̂α, ρ̂(t)} − 2L̂αρ̂(t)L̂
†
α

]
, (4)

where the system part is given by

Ĥ sys = Ĥ Q + εd d̂†d̂ + Ĥ C, (5)

so that dim(Ĥ sys)= 2 dim(Ĥ Q), where the pre-factor 2 stems from the two SET states. In
the standard derivation the Lindblad operators for the SET tunneling are obtained as L̂D =
√
0D 1sys ⊗ d̂ and L̂S =

√
0S 1sys ⊗ d̂† with the tunneling rates

0α(ω)= 2π
∑

k

|tkα|
2δ(ω− εkα), α ∈ {S,D}. (6)

In the wide-band approximation and infinite bias limit the rates are energy independent 0α =

0α(ω), so that the SET is entirely decoupled from Q except for the interaction Ĥ C entering the
first term on the right-hand side of (4). It merely acts on the quantum system, but not on the
SET.

For the following we provide the Q-part of the interaction between the SET and the
quantum system in its spectral decomposition

X̂ =

∑
Uν |ν〉 〈ν| , (7)

which serves as a definition of the states |ν〉 and the interaction strengths Uν . A specific
realization of such a type of interaction may be the Coulomb interaction of the SET electron
with the electrons confined in the quantum system, which we are going to discuss in section 4.

For the specification of the Lindblad operators in (4) we now utilize the states |ν〉 and
follow the phenomenological approach of [53, 54], where the tunneling rates are conditioned
on whether state ν is occupied: 0(ν)α . In the above example of Coulomb interacting electrons one
can argue that the repulsion of electrons induces an energy shift of the SET level εd → εd + Uν .
With increasing Uν , it follows that the SET electrons experience lower tunneling barriers and
correspondingly higher tunneling rates 0α. The Lindblad operators then turn out to be

L̂D = B̂D ⊗ d̂, L̂S = B̂S ⊗ d̂† with B̂α ≡

∑
ν

√
0
(ν)
α |ν〉 〈ν| . (8)

This leads to a dissipative coupling of the SET and the quantum system.
The interaction of the quantum system with an environment is contained in the Lindblad

operators L̂E in (4), which will be specified later, e.g., in (26).

3.3. Effective Hamiltonian

The Markovian master equation of Lindblad form (4) can be written as

d

dt
ρ̂(t)= Lρ̂(t)= (L0 +J )ρ̂(t) (9)
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with J ρ̂(t) =̂
∑

α=E,S,D L̂αρ̂(t)L̂†
α for environment-induced jumps in the quantum system and

electron jumps through the SET (throughout the following we will use calligraphic symbols
to denote super-operators). The free Liouvillian L0 describes the evolution of the system
without electron transfer between sub-systems and reservoirs and assumes the form (see
also [38])

L0ρ̂(t)= −i{Ĥ effρ̂(t)− ρ̂(t)Ĥ
†
eff}, (10)

where

Ĥ eff = Ĥ sys −
i

2

∑
α=E,S,D

L̂†
α L̂α (11)

is an effective non-Hermitian Hamiltonian operator for the system. Note that the effective
Hamiltonian is invariant under unitary transformations of the Lindblad operators L̂α and also
inhomogeneous shift transformations that leave the Lindblad form invariant. The effective
Hamiltonian has right and left eigenstates Ĥ eff |ψk〉 = εk |ψk〉 and 〈ψ̃k|Ĥ eff = εk〈ψ̃k|, which,
in general, are non-adjoint and the eigenenergies are complex. These states will be used to
construct the eigenoperators of the free Liouvillian, which are obtained by

L0ρ̂ jk = −i(ε j − ε∗

k )ρ̂ jk, (12)

with ρ̂ jk = |ψ j〉〈ψ̃k|. The diagonal eigenoperators ρ̂k ≡ ρ̂kk obey

L0ρ̂k = 2=(εk)ρ̂k, (13)

and represent pure states—due to this property they will play a crucial role in the following.
For our system we decompose the effective Hamiltonian (11) with respect to the SET

charge state |n〉 (n ∈ {0, 1}) as

Ĥ eff =

∑
n=0,1

Ĥ (n)
eff ⊗ |n〉 〈n| , where

Ĥ (0)
eff ≡ Ĥ Q −

i

2

(
L̂†

E L̂E + B̂†
S B̂S

)
, (14)

Ĥ (1)
eff ≡ Ĥ Q −

i

2

(
L̂†

E L̂E + B̂†
D B̂D

)
+

∑
ν

Uν |ν〉 〈ν| + εd1

with B̂†
α B̂α =

∑
ν 0

(ν)
α |ν〉 〈ν|. It follows that the eigenstates and -energies can be separated with

respect to the SET charge state:

Ĥ (n)
eff |ψnk〉 = εnk |ψnk〉 , 〈ψ̃nk|Ĥ

(n)
eff = εnk〈ψ̃nk|. (15)

Our aim is the stabilization of a pure state in the quantum system so that we make use of
these eigenstates to build the operators

ρ̂
(0)
k = |ψ0k〉 〈ψ̃0k|, ρ̂

(1)
k = |ψ1k〉 〈ψ̃1k| (16)

with Tr{[ρ̂(0,1)l ]2
} = 1. Now, the state, which we seek to stabilize, we write in the general form

R̂k,k′ = c0ρ̂
(0)
k ⊗ |0〉 〈0| + c1ρ̂

(1)
k′ ⊗ |1〉 〈1| , (17)
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Figure 1. (a) Schematic setup of the electronic feedback device. (Q)uantum
system, (D)etector, (E)nvironment of Q. Note that we distinguish between the
intrinsic back-action from the detector on Q and the feedback signal, which
undergoes a classical processing by the experimenter. (b) Device implementation
with a single charge qubit as the quantum system and an SET as the detector.

where due to normalization c0 + c1 = 1 holds. Note that there are no coherences between
different SET charge states since these correspond to (forbidden) superpositions of states of
different charge. The corresponding state of the isolated quantum system is

ρ̂Q,k,k′ ≡ TrSET(R̂k,k′)= c0ρ̂
(0)
k + c1ρ̂

(1)
k′ , (18)

which is a mixture in general. To obtain a pure state for a finite SET current (i.e. ci > 0)
ρ̂Q,k ≡ ρ̂

(0)
k = ρ̂

(1)
k′ must be fulfilled. (Pure states can also be obtained for c0 = 1 or c1 = 1, but

those do not correspond to a finite SET current. The feedback loop could not be closed in those
cases.) With the help of (15) it readily follows that 0(ν)S = 0

(ν)
D ≡ 0(ν)/2, ε0k = ε1k ≡ εk and

c0 = c1 = 1/2. Furthermore, we need to demand that

Uν � max
[
〈ν| Ĥ Q

∣∣ν ′
〉
, 0(ν)α

]
, (19)

so that this term can be neglected in Ĥ (1)
eff , but the differences between the 0(ν) are still resolved.

Our desired state then will be a direct product of the quantum system and the SET state:

R̂k = ρ̂Q,k ⊗ ρ̂SET (20)

with the steady-state mixture ρ̂SET = Diag(1/2, 1/2) of a symmetric SET. Hence, in order to
stabilize pure states in the isolated quantum system a dis-entanglement between the detector
and the quantum system has to be forced. This can be achieved by a vanishing direct back-
action Uν from the SET towards the quantum system (see figure 1(a)) and symmetric tunnel
coupling in the SET.

3.4. Feedback stabilization

The detector signals obtained from a measurement of electron jumps at the source or drain
barrier of the SET detector will be used to trigger short time pulses on the quantum system
Hamiltonian. In experiments immediately after an electron jump is detected an electric voltage
pulse will be applied at a metallic gate in the electronic device which belongs to Q (figure 1(b)).
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As shown in appendix A for unit detection efficiency this leads to a modification of the
Markovian quantum master equation (9)

d

dt
ρ̂(t)=

[
L0 +JE +

∑
α=S,D

CαJα

]
ρ̂(t). (21)

The SET jump operators Jα are supplemented by the unitary operations Cαρ̂ = eKα ρ̂ with the
super-operators KS/D given by

Kαρ̂(t)= −
i

h̄

[
ĥα, ρ̂(t)

]
δt, (22)

where ĥα acts on the quantum system during the time interval δt . Such a feedback scheme has
been introduced by Wiseman and Milburn in a quantum optical context [1, 9].

In order to realize this scheme, single electron jumps in the SET need to be resolved.
However, in an experimental setup the sequence of single jump events at the SET
barriers which corresponds to the respective current Iα(t)= e

∑
k δ(t − t (α)k ) may neither be

resolved nor measured independently in the SET circuit. One possible solution may be
the implementation of a quantum-point contact weakly attached to the SET as proposed
in [39].

Inserting the operators (20) into the steady-state version of (21) yields

Ĝ(k) ≡
[
2=(εk)1 +AE + CA

]
ρ̂Q,k = 0, (23)

where AE is defined by JE[ρ̂Q,k ⊗ ρ̂SET] =AEρ̂Q,k ⊗ ρ̂SET, and A is defined by JS[ρ̂Q,k ⊗

|0〉 〈0|] =Aρ̂Q,k ⊗ |1〉 〈1| or JD[ρ̂Q,k ⊗ |1〉 〈1|] =Aρ̂Q,k ⊗ |0〉 〈0|. The feedback must be
symmetric from the source and drain SET current, such that C ≡ CS = CD. Equation (23)
provides the central result of this work and defines an inverse eigenvalue problem, where the
eigenenergies and -states are known to belong to the effective Hamiltonian Ĥ eff. The feedback
super-operator C = eK, in particular ĥ, will be sought. Solving such a problem can be considered
as reverse state engineering, as already discussed in section 2—one needs to determine the
feedback operation to stabilize a given quantum state, which is chosen to be compatible with the
detection scheme. To provide a measure of stabilization quality we will use the Hilbert–Schmidt
norm

gk ≡

∑
i j

|Ĝ(k)i j |
2 > 0 (24)

of the left-hand side of (23); here equality holds for perfect stabilization of the kth eigenstate of
the effective Hamiltonian.

4. Applications of the feedback scheme

In this section, we provide two electronic examples, which will illustrate the general feedback
scheme with the aim of stabilizing pure states. The first example deals with a single-electron
quantum system: a charge qubit. Secondly, the stabilization of entangled states will be studied
in a system of two interacting charge qubits.
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(c)

y

Figure 2. (a) Real and (b) imaginary parts of eigenenergies of the single qubit
effective Hamiltonian (11); (blue, solid) ε = 0, (orange, dashed) ε = 0.2, (green,
dotted) ε = 0.4. (c) Qubit Bloch vectors of eigenstates of effective Hamiltonian
(11) for varying γ− and vanishing back-action U = 0. |γ−|< 4TC: delocalization.
|γ−|> 4TC: localization. (blue, solid) ε = 0, (orange, dashed) ε = 0.2.

4.1. A single-electron quantum system: a dissipative charge qubit

Model. The charge qubit Hamiltonian reads

Ĥ Q =
ε

2
σ̂ z + TCσ̂ x , (25)

with the qubit bias ε ≡ εt − εb and the coupling between the dots TC. The Hamiltonian is given
in the Bloch representation with Pauli matrices: σ̂ z = |t〉 〈t | − |b〉 〈b| and σ̂ x = |t〉 〈b| + |b〉 〈t |.
As a specific source of dissipation we consider background charge fluctuations where the qubit
bias is fluctuating: ε(t)= ε + ξ(t)/

√
τ with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = δ(t − t ′). This yields

the dissipative Lindblad operator [55]

L̂E =
1

√
τ
σ̂ z ⊗ 1SET. (26)

Similar dissipators can also be found for electron–phonon coupling in the high temperature
limit [56].

The SET couples capacitively with the qubit so that X̂ =
U
2 σ̂ z (U ≡ Ut − Ub) and the

Lindblad operators in the master equation (8) become

L̂D =

(√

0′

D |t〉 〈t | +
√
0D |b〉 〈b|

)
⊗ d,

(27)
L̂S =

(√

0′

S |t〉 〈t | +
√
0S |b〉 〈b|

)
⊗ d†.

Spectrum of the effective Hamiltonian. Without dissipation the eigenenergies of the effective
Hamiltonian (11) are

ε0± = −i
γ +

S

2
±

√
eS(ε)2 + T 2

C , ε1± = −i
γ +

D

2
±

√
eD(ε + U )2 + T 2

C (28)

with γ ±

α ≡ (0α ±0′

α)/2 and ea(x)≡ (x + iγ −

a )/2. For 0′/0 < 1 + 8TC/0 (e = U = 0) the
energies (28) have a nonvanishing real part, which provides the qubit oscillation frequency. For
0′/0 > 1 + 8TC/0 the eigenenergies are purely imaginary (see figure 2), i.e., there is an abrupt
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transition between an under- and an over-damped regime. The corresponding pure eigenstates
are

ρ̂Q± =
1

2


1
γ−

(
A± 4i TC

−4i TC A∓

)
for |γ −

|> 4TC,

1

4TC

(
4TC iA±

−iA∓ 4TC

)
else,

(29)

where A± ≡ γ −
±

√
|(γ −)2 − (4TC)2|, γ ±

≡ (0±0′)/2. They are depicted in the Bloch sphere
in figure 2(c) for varying detection strength 0′/0. For ε = 0 and |γ−|< 4TC the states ‘live’ in
the x–y-plane and for |γ−|> 4TC in the y–z-plane. For a finite qubit bias ε the Bloch vectors
are not constrained to these planes anymore, as shown by the dashed curves in figure 2(c).

Feedback stabilization. Now, we will study whether it is possible to stabilize these states
by feedback. As feedback operation on the qubit we introduce the following Hamiltonian:

ĥ =2
[

sin (ϕ)σ̂x + cos (ϕ)σ̂z

]
, (30)

which allows for qubit rotations with feedback angle ϕ and strength 2.
It turns out that for |γ−|> 4TC and ε = 0 the corresponding eigenstates of the effective

Hamiltonian can be stabilized when ϕ = π/2. The desired feedback strength 2 can be obtained
analytically and is provided in [39] for ϕ = π/2: there are two distinct solutions for 2, where
the state ρ̂− provides the lower branch and ρ̂+ provides the upper branch of figure 5 in [39].

In order to stabilize the states ρ̂± for |γ −
|< 4TC we need to adjust |ϕ| 6= π/2 (not

considered in [39]). Then, the evaluation of the Hilbert–Schmidt norm (24) reveals clear minima
with gk = 0 in that regime (figure 3(a)). The feedback angle ϕ and strength 2 possess the same
absolute value for g± but different signs; their values for perfect stabilization are shown in
figures 3(b) and (c), respectively.

The single qubit can be purified in the entire range of detection strengths and for an
arbitrary qubit bias ε. However, additional dissipation that is not compensated for by appropriate
feedback control actions, e.g. due to environmental charge fluctuations, leads to the loss of
stabilizability as indicated in figure 3(a).

At the end of this section, we compare our studies with the work by Wang and
Wiseman [36], which deals with the purification of a two-level atom by optical feedback control.
It is based upon the unit-efficiency homodyne detection of the resonance fluorescence. In
contrast to our detection-based feedback scheme, where the control is triggered after a detection
click is registered, their feedback Hamiltonian is constantly applied to the system. This leads
to a different form of the unconditioned master equation (21) and, consequently, to distinct
feedback behavior. A more detailed comparison of the homodyne-based with the detection-
based feedback scheme in the context of entanglement generation in a quantum optical setup
can be found in [33]. However, in solid-state systems we are not aware of an electronic detection
scheme yielding a formally equivalent description to homodyne-based feedback schemes in
quantum optics [9].

4.2. Two interacting charge qubits: entanglement stabilization

Model. We consider an interacting bipartite system of two coupled qubits with the Hamiltonian

Ĥ Q = Ĥ 1 + Ĥ 2 + Ĥ 12 with Ĥ i =
εi

2
σ̂ (i)z + Ti σ̂

(i)
x , Ĥ 12 =

u

2
σ̂ (1)z ⊗ σ̂ (2)z , (31)
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Figure 3. (a) The Hilbert–Schmidt norm (24) versus the feedback parameter
2 for a single qubit, 0′/0 = 2.8 and |ϕ| = 0.4234π , g+ (red, dashed) and g−

(blue, solid). The shape of the curves around gk = 0 provides the stabilization
sensitivity on 2. (b) Feedback angle ϕ and (c) feedback parameter 2 (see (30))
versus coupling strength 0′/0 required for perfect feedback stabilization gk = 0.
Different curves correspond to ε = 0 (blue, solid), ε = −0.1 (orange, solid),
ε = 0.1 (orange, dashed), ε = −0.2 (green, solid) and ε = 0.2 (green, dashed).
The symbol • indicates the parameter set of the red (dashed) and blue (solid)
curves in (a). For finite dissipation perfect stabilization fails; see thin black
curves in (a) 1/(τ0)= 0.02, 0.1. Parameters: U = 0, TC/0 = 1.

where u ≡ u⊥ − u× (u⊥ is the interaction between electrons in both the top or bottom dots
(see the inset of figure 4), u× refers to the diagonal interaction), σ̂ (i)z = |i, t〉 〈i, t | − |i, b〉 〈i, b|

and σ̂ (i)x = |i, t〉 〈i, b| + |i, b〉 〈i, t | (i ∈ {t, b}). The corresponding eigenspectrum can be found in
appendix B.1.

The qubit part of the Lindblad operators (9) reads here

B̂α =

√
0
(t,t)
α |t, t〉 〈t, t | +

√
0
(t,b)
α |t, b〉 〈t, b| +

√
0
(b,t)
α |b, t〉 〈b, t | +

√
0
(b,b)
α |b, b〉 〈b, b| (32)

with |t, t〉 ≡ |1, t〉 ⊗ |2, t〉 etc.
Charge detector. The system part of the detector coupling reads X̂ =

∑
j

U j

2 σ̂
( j)
z . To be a bit more

realistic, in the following we will consider a specific geometry for the qubit system plus detector,
which is shown in the inset of figure 4. For simplicity we assume the four quantum dots of the
qubit system placed at the corners of a square with edge length 2L . The SET detector is located
on a circle surrounding the qubits with radius R; its position, then, is entirely determined by the
angle 8 and L/R. The derivation of the corresponding interaction strength Uν can be found in
appendix C.

In order to provide a relation between Uν and 0(ν) we need to know the particular energy
dependence of the SET tunnel rates 0. However, according to condition (19) we assume that the
energy dependence can be linearized:

0(ν) = 0
Uν

U0
, (33)
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Figure 4. (Top) Configuration interaction Uν as a function of the detector
position 8 (see the inset) for L/R = 1/2. In far-field (L/R → 0) Uν → 2
independent of8. (Bottom) Entanglement entropy of eigenstates of the effective
Hamiltonian. Other parameters are U0/0 = 0.5, u/0 = 1 and T1/0 = T2/0 =

1. Complete bipartite entanglement (34) and detectability occurs at 8s = (2n +
1)π/2 (n ∈ Z) (black, solid curve) with Bell state |4〉 (appendix B.2). (Inset)
Detector–qubit geometry.

where ν ∈ {|t, t〉 , |t, b〉 , |b, t〉 , |b, b〉} and 0 is the intrinsic energy-independent tunnel rate and
U0 provides the detector sensitivity.

In figure 4 (top), we show the particular dependence Uν ∝ 0(ν) on the detector position 8.
At positions8= nπ (n ∈ Z) there is no resolution on the qubit states since all Uν’s are equal; the
detector is useless. Of particular interest are the symmetric detector positions8s ≡ (2n + 1)π/2,
where it cannot discriminate between state |ν〉 = |t, b〉 and |b, t〉. This leads to a complete
bipartite entanglement of one of the eigenstates of the effective Hamiltonian as shown in
figure 4; it is the Bell state |4〉 (appendix B.2). Since we deal with the pure eigenstates of Ĥ eff

the standard definition by the von Neumann entropy has been used:

S = −Tr[ρA log2(ρA)] = −Tr[ρB log2(ρB)] (34)

with ρA = TrB[ρ], ρB = TrA[ρ].
Before we start the discussions of entanglement stabilization by feedback, it is worth

looking at the behavior without feedback. In appendix D, the quantum master equation in the
energy eigenbasis is written down completely. Except for the symmetric detector positions8s its
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Figure 5. Detector current as a function of the detector position 8 without
feedback. A local minimum current is observed at 8s = (2n + 1)π/2 (n ∈ Z).
At these positions the SET detector current is bistable with one steady state
being the asymmetric Bell state |4〉 and the other represents a mixture of the
remaining energy eigenstates. The respective currents are specified in (36). The
curves correspond to different asymmetries a = 1 (blue, solid), 0.7 (red, dashed)
and 0.5 (green, dotted). The symbols are • (〈I 〉1, a-independent), � (〈I 〉2 for
a = 0.7) and � (〈I 〉2 for a = 0.5). Other parameters are U0/0 = 0.5, u/0 = 1
and T1/0 = T2/0 = 1.

steady state is unique and turns out to be a complete mixture—the steady-state average current
is given by (the current is computed by the standard counting statistics method introduced in
detail in, e.g., [52])

〈I 〉 = e
0(t,t) +0(t,b) +0(b,t) +0(b,b)

16
. (35)

In contrast, the symmetric detector configuration yields a block structure of the Liouvillian
super-operator (appendix D.2) and, consequently, provides two steady states: one is the Bell
state |4〉 (appendix B.2) (the preparation of an entangled state by a current measurement alone
has been also reported in [57, 58]) and the other is the complete mixture of the remaining energy
eigenstates. The corresponding steady-state currents are (T1 = T2)

〈I 〉1 = e
0(t,b)

4
, 〈I 〉2 = e

0(t,t) +0(b,b) +0(t,b)

12
. (36)

For our specific choice of the 0(ν) in figure 4 we have 0(t,t) +0(b,b) = 20(t,b) so that all currents
are equal: 〈I 〉 = 〈I 〉1 = 〈I 〉2 (blue, solid curve and the symbol • in figure 5). Assuming some
asymmetry 0(t,t) + a0(b,b) 6= 20(t,b) for a < 1 due to, e.g., screening leads to 〈I 〉 6= 〈I 〉1 6= 〈I 〉2

(dashed (a = 0.7) and dotted (a = 0.5) curves in figure 5). The square/diamond symbol
corresponds to 〈I 〉2 for a = 0.7/a = 0.5, respectively.

In order to obtain one of these two states without feedback in the long-term limit, one
needs to initialize the system in the accompanying subspace [59]. This is expected to be not
only challenging but also vulnerable to any slight perturbation that couples the two subspaces.
With the help of feedback it is possible to bypass this problem and force the system into the
desired state.
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Feedback strength

Figure 6. Detector currents with feedback 〈I 〉fb
1 (black) and 〈I 〉fb

2 (colored) as
a function of the feedback strength θ (1)x at detector positions 8s = (2n + 1)π/2
(n ∈ Z). For perfect stabilization the currents provide a maximum with respect
to all feedback strengths θ (i)γ (here only θ (1)x shown) with values given in (36).
Therefore the SET current can be used to adjust the feedback strengths to obtain
entanglement stabilization. The curves correspond to different asymmetries
a = 1 (solid), 0.7 (dashed) and 0.5 (dotted). Other parameters are L/R = 0.5,
U0/0 = 0.5, u/0 = 1 and T1/0 = T2/0 = 1.

Feedback stabilization. For the selection and stabilization of the maximally entangled state |4〉

we can apply the following local operation in (23), which acts on both qubits separately:

Û = e−iĥδt/h̄
= eiEn1·Eσ1 ⊗ eiEn2·Eσ2, (37)

where Eni =
∑

α=x,y,z θ
(i)
α eα, Eσi =

∑
α=x,y,z σ̂

(i)
α eα, By numerically minimizing the Hilbert–

Schmidt norm gk (24), we find the following feedback parameters (in units of π ):

θ (1)x θ (1)y θ (1)z θ (2)x θ (2)y θ (2)z

0.0252 0.1238 0.536 −0.0206 −0.1010 −0.4373

which correspond to g4 = 0. We remark that this set may not be unique because other minima
with g4 = 0 might be found. Stabilization is only achieved for the antisymmetric Bell state |4〉

at 8s and for T = T1 = T2. Remarkably, the parameters are independent of the values of the
asymmetry a, inter-qubit interaction u, qubit tunnel coupling T and detector sensitivity U0. As
long as the inverse qubit–detector distance L/R is larger than zero the feedback parameters are
also independent of L/R. Even though we succeeded in stabilization of a maximally entangled
state, we were not able to stabilize any other state at 8s of the effective Hamiltonian and for
8 6=8s. For that purpose we have used the most general form of a unitary transformation on
SU(4) given by [60]

Û = k1 · k · k2, (38)
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consisting of a pulse sequence of two local operations k j (37) and a nonlocal operation

k =

∏
α=x,y,z

eiθα σ̂
(1)
α ⊗ σ̂

(2)
α . (39)

The SET detector current can be used to monitor the effect of feedback, as shown in
figure 6. For perfect entanglement stabilization with feedback strengths θ (i)γ given in the above
table the bistable currents 〈I 〉1 and 〈I 〉2 provide maxima. The corresponding current values are
given in (36). Hence, by monitoring the SET current the feedback strengths can be adjusted very
accurately in order to achieve perfect entanglement stabilization.

The idea of stabilizing entangled states by quantum-jump-based feedback has recently
been addressed by Carvalho and Hope [32, 33]. In contrast to our all-electronic scheme, they
study a pair of two-level atoms coupled to a single cavity mode; the feedback is triggered by a
photodetector, which is not explicitly entering the calculations as in our studies. Nevertheless,
there are some formal similarities between our works and findings, e.g. the occurrence of the
antisymmetric Bell state as a steady state without feedback control, which deserve to be further
analyzed.

5. Conclusions

We have studied a method to stabilize pure states in interacting solid-state quantum systems
based on electronic feedback triggered by single detector jumps. This method facilitates the
reverse engineering of quantum states.

In particular, a normal-conducting SET has been used as a realistic detector model in
order to derive a Lindblad quantum master equation for the coupled system of a detector and a
quantum system. This can be transferred into an effective Hamiltonian description, where the
eigenstates of the effective Hamiltonian form the set of stabilizable states. We have discussed the
conditions under which the quantum-system state becomes pure even though the detector is in
a transport state: (i) vanishing direct back-action from the detector and (ii) symmetric coupling
in the SET. This enabled us to formulate the feedback stabilization as an inverse eigenvalue
problem—the eigenstates and -energies belong to the effective Hamiltonian and the (feedback)
super-operator will be determined.

We have illustrated the utility of our method with two examples.
First, we applied it to the stabilization of pure states in a single charge qubit. Beyond

the studies in our previous paper [39], here we were able to obtain the feedback operations,
which purify the qubit for the whole range of detector–qubit coupling. Thereby, the observed
bifurcation is a property of the effective Hamiltonian spectrum and is expected to occur in more
complex systems. Additional dissipative sources destroy the effect of feedback stabilization.

We have further studied the potential of the method to stabilize entanglement in a system of
two interacting charge qubits. Since the SET couples capacitively this issue depends crucially on
the geometry of the coupling between the detector and the qubit system. We propose a realistic
in-plane geometry, where at certain symmetric detector positions one of the eigenstates of the
effective Hamiltonian is an asymmetric Bell state. It turns out that this state can be stabilized
within our feedback scheme, but all other (less-entangled) states are not stabilizable even with
the help of general SU(4) operations. We have demonstrated that by monitoring the detector
current the feedback stabilization can be accurately tuned.
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Some open questions may be addressed in future works: can one obtain some general
statements on the existence and uniqueness of the solution of the inverse eigenvalue
problem (23)? How can our general feedback scheme be transferred to setups with
superconducting charge qubits or spin qubits used in recent experiments?
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Appendix A. Derivation of the quantum master equation under feedback control

Here, we will follow the derivation of an effective quantum master equation under the influence
of single-jump feedback control in [61]. Along these lines we introduce measurement operators
for the outcome jump-in (i), jump-out (o) and no jump (n) of electrons at the SET

M̂ i(1t)=

∑
ν

√
0
(ν)

S 1t |ν〉 〈ν| ⊗ d̂†
= L̂S

√
1t,

M̂o(1t)=

∑
ν

√
0
(ν)
D 1t |ν〉 〈ν| ⊗ d̂ = L̂D

√
1t, (A.1)

M̂n(1t)=

∑
ν

√
1 −0

(ν)

S 1t |ν〉 〈ν| ⊗ d̂†d̂ +
∑
ν

√
1 −0

(ν)
D 1t |ν〉 〈ν| ⊗ (1 − d̂†d̂),

which obeys the completeness relation M̂†
i (1t)M̂ i(1t)+ M̂†

o(1t)M̂o(1t)+ M̂†
n(1t)M̂n(1t)=

1. For small 1t we will do an expansion later on so that we need their action for 1t = 0:

Mi(0)ρ̂ =̂ M̂ i(0)ρ̂ M̂†
i (0)= 0,

Mo(0)ρ̂ =̂ M̂o(0)ρ̂ M̂†
o(0)= 0,

Mn(0)ρ̂ =̂ M̂n(0)ρ̂ M̂†
n(0)= ρ̂,

(A.2)
M′

i(0)ρ̂ =̂
d

d1t
[M̂ i(1t)ρ̂ M̂†

i (1t)]1t=0 = L̂Sρ̂ L̂†
S,

M′

o(0)ρ̂ =̂
d

d1t
[M̂o(1t)ρ̂ M̂†

o(1t)]1t=0 = L̂Dρ̂ L̂†
D,

M′

n(0)ρ̂ =̂
d

d1t
[M̂n(1t)ρ̂ M̂†

n(1t)]1t=0 = −
1

2

{
L̂†

D L̂D + L̂†
S L̂S, ρ̂

}
.

The feedback scheme is now defined by performing an instantaneous unitary transformation
Ûα—experimentally achieved by applying a δ-pulse on the system Hamiltonian—of the system
density matrix whenever the detector generates a click. This leads us to the discrete iteration of
the system density matrix ρ̂(t +1t)= P(1t)ρ̂(t) with the effective propagator

P(1t)= eL01tCSMi(1t)+ eL01tCDMo(1t)+ eL01tMn(1t) (A.3)

where Cαρ̂ ≡ eKα ρ̂ =̂ Ûαρ̂ Û †
α and the Liouvillian super-operator L0 contains the system

Hamiltonian and further un-monitored reservoirs. We can use this propagator to eventually

New Journal of Physics 14 (2012) 123036 (http://www.njp.org/)

http://www.njp.org/


17

derive our effective master equation under unitary feedback control:

d

dt
ρ̂(t)= lim

1t→0

ρ̂(t +1t)− ρ̂(t)

1t

= lim
1t→0

1

1t
[P(1t)− 1]ρ̂(t)

= lim
1t→0

1

1t

{[
CSMi(0)+ CDMo(0)+Mn(0)− 1

]
+1t

[
L0CSMi(0)+L0CDMo(0)+L0Mn(0)

+ CSM′

i(0)+ CDM′

o(0)+M′

n(0)
]}
ρ̂(t)

=

[
L0 + CSM′

i(0)+ CDM′

o(0)+M′

n(0)
]
ρ̂(t)

=

[
L0 + CSJS + CDJD

]
ρ̂(t). (A.4)

Correspondingly, jump super-operators in the no-feedback master equation are supplemented
by control operators to yield the feedback master equation.

Appendix B. Coupled qubits without a detector

Let us assume unbiased qubits: εi = 0, ∀i . Then the eigenspectrum of (31) reads

e1/2 = ±1+,
∣∣ψ1/2

〉
=

a+ ± a−

2
|1〉 ±

a+ ∓ a−

2
|2〉 ,

(B.1)
e3/4 = ±1−,

∣∣ψ3/4

〉
= ∓

b+ ± b−

2
|3〉 +

b+ ∓ b−

2
|4〉 ,

with the Bell states

|1〉 =
1

√
2

[
|t, t〉 + |b, b〉

]
, |2〉 =

1
√

2

[
|t, b〉 + |b, t〉

]
,

(B.2)
|3〉 =

1
√

2

[
|t, t〉 − |b, b〉

]
, |4〉 =

1
√

2

[
|t, b〉 − |b, t〉

]
,

and 1± ≡
√

T 2
± + u2/4, T± ≡ T1 ± T2, a± ≡

√
1 ± T+/1+ and b± ≡

√
1 ± T−/1−. For u → 0

the eigenstates |ψi〉 are product states, whereas in the opposite limit u → ∞ they become
maximally entangled Bell states.

Appendix C. Coulomb interaction in the detector–qubit geometry

The configuration interaction in the geometry shown in figure 4 is simply given by

Uν = U1i,2 j = U1i + U2 j =
e2

ε

(
1

l1i
+

1

l2 j

)
, (C.1)

with the elementary charge e > 1, the dielectric constant ε and the distance between the detector
and the qubit square corners

l2
i j = 2L2 + R2

− 2
√

2L R cos (θi j) (C.2)

New Journal of Physics 14 (2012) 123036 (http://www.njp.org/)

http://www.njp.org/


18

where

θ1t =
3
4π −8, θ1b =

5
4π −8,

(C.3)
θ2t =8−

π

4 , θ2b =8+ π

4 .

Appendix D. The quantum master equation—coupled qubits

The quantum master equation for the coupled qubit system of section 4.2 in the energy
eigenbasis (appendix B.1) reads

d

dt
ρ̂(t)= Lρ̂(t) (D.1)

with ρ̂ ≡ (ρp, ρca, ρcb)
T, where ρp ≡ (ρ11, ρ22, ρ33, ρ44), ρca ≡ (ρ12, ρ23, ρ13, ρ24, ρ34, ρ14),

ρcb ≡ (ρ21, ρ32, ρ31, ρ42, ρ43, ρ41), ρi j = (ρ
(0)
i j , ρ

(1)
i j ) and the Liouvillian super-operator

L≡
1

2

Lpop Lpc L∗

pc

L†
pc Lcc 0

LT
pc 0 L∗

cc

 . (D.2)

Its sub-matrices for the (pop)ulation sector, the coupling sector between population and
coherences (pc) and the coherences sector (cc) are given by

Lpop ≡


Aa

12 Ba D12 C12

Ba Aa
21 C21 D21

D12 C21 Bb
12 Bb

C12 D21 Bb Ab
21

 ,

Lpc ≡


Ea

21 I a
21 K a

12,12 La
12 J21,21 H a

12,12

(Ea
12)

∗
−H a

21,21 −La
21 K a

21,21 −J12,12 I a
12

−J21,12 H b
21,12 K b

12,12 Lb
21 (Eb

12)
∗

−I b
21

J12,21 −I b
12 −Lb

12 K b
21,21 Eb

21 H b
12,21

 ,

Lcc ≡



Fa −La
21 −H a

21,12 I a
12 M K a

21,12

−La
21 N ∗

12 Pa
21 Pb

21 −Lb
21 O

−H a
21,12 Pa

21 S12 O −I b
21 Pb

12

I a
12 Pb

21 O S∗

21 −H b
21,21 Pa

12

M −Lb
21 −I b

21 −H b
21,21 Fb K b

12,21

K a
21,12 O Pb

12 Pa
12 K b

12,21 N21


.

The corresponding 2 × 2 sub-matrices are defined as

Ax
i j = (− x2

1γ
+
i − x2

2γ
+
j )1 + (x2

1 γ̂
+
i + x2

2 γ̂
+
j )

2
σ̂ ′

x ,

Bx = [x1x2(γ̂
+
1 − γ̂ +

2 )]
2σ̂ ′

x ,
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Ci j = (a1b2γ̂
−

i + a2b1γ̂
−

j )
2σ̂ ′

x ,

Di j = (a1b1γ̂
−

i − a2b2γ̂
−

j )
2σ̂ ′

x ,

I x
i j = x1x2(a2b2γ̂

−

i − a1b1γ̂
−

j )(γ̂
+
1 − γ̂ +

2 ) σ̂
′

x ,

L x
i j = x1x2(a1b2γ̂

−

i + a2b1γ̂
−

j )(γ̂
+
1 − γ̂ +

2 ) σ̂
′

x ,

Ji j,kl = (a1b2γ̂
−

i + a2b1γ̂
−

j )(−a1b1γ̂
−

k + a2b2γ̂
−

l ) σ̂
′

x ,

M = (a1b1γ̂
−

1 − a2b2γ̂
−

2 )(a1b1γ̂
−

2 − a2b2γ̂
−

1 ) σ̂
′

x ,

O = −a1a2b1b2(γ̂
+
1 − γ̂ +

2 )
2 σ̂ ′

x ,

E x
i j = −

{
±

1
2 x1x2(γ

+
1 − γ +

2 )+ 4i
[
T±(x2

1 − x2
2)− u x1x2)

]}
1 ± x1x2(x2

i γ̂
+
1 + x2

j γ̂
+
2 )(γ̂

+
1 − γ̂ +

2 ) σ̂
′

x ,

H x
i j,kl = −

1
2(a1b2γ

−

i + a2b1γ
−

j )1 + (a1b2γ̂
−

i + a2b1γ̂
−

j )(x
2
1 γ̂

+
k + x2

2 γ̂
+

l ) σ̂
′

x ,

K x
i j,kl =

1
2(a1b1γ

−

i − a2b2γ
−

j )1 + (a2b2γ̂
−

j − a1b1γ̂
−

i )(x
2
1 γ̂

+
k + x2

2 γ̂
+

l ) σ̂
′

x ,

Fx = −
1
2

[
32ix1x2T± + 8iu(x2

1 − x2
2)+0/2

]
1 + (x2

1 γ̂
+
1 + x2

2 γ̂
+
2 )(x

2
1 γ̂

+
2 + x2

2 γ̂
+
1 ) σ̂

′

x ,

P x
i j =

1
2

{
8i[(x2

1 − x2
2)T+ − x1x2 u] ∓ x1x2(γ

+
1 − γ +

2 )
}

1 ± x1x2(x̄2
i γ̂

+
2 + x̄2

j γ̂
+
1 )(γ̂

+
1 − γ̂ +

2 ) σ̂
′

x ,

Ni j =

{
− 8i

[
a1a2T+ + b1b2T− + (a2

1b2
1 − a2

2b2
2)u

]
− 2(a2

1b2
2γ

+
j + a2

2b2
1γ

+
i )− (a

2
1b2

1 + a2
2b2

2)0
}

1

+
{
(a2

i γ̂
+
2 + a2

j γ̂
+
1 )(b

2
j γ̂

+
2 + b2

i γ̂
+
1 )

}
σ̂ ′

x ,

Si j =

{
− 8i[a1a2T+ − b1b2T− − (a2

2b2
1 − a2

1b2
2)u] − 2(a2

2b2
2γ

+
i + a2

1b2
1γ

+
j )− (a

2
2b2

1 + a2
1b2

2)0
}

1

+
{
(a2

i γ̂
+
2 + a2

j γ̂
+
1 )(b

2
i γ̂

+
2 + b2

j γ̂
+
1 )

}
σ̂ ′

x ,

with σ̂ ′

x ≡ eiχ |t〉 〈b| + |b〉 〈t |, 0 ≡ 0(t t) +0(bb) +0(tb) +0(bt), γ ±

1 ≡ 0(t t) ±0(bb), γ ±

2 ≡ 0(tb) ±

0(bt), γ̂ ±

1 ≡
√
0(t t) ±

√
0(bb), γ̂ ±

2 ≡
√
0(tb) ±

√
0(bt), a1 ≡

a++a−

2
√

2
, a2 ≡

a+−a−

2
√

2
, b1 ≡

b++b−

2
√

2
and b2 ≡

b+−b−

2
√

2
.
It is observed that at 8= (2n + 1)π/2 the Liouvillian super-operator (appendix D.2)

decomposes into block structure since γ −

2 = γ̂ −

2 = and b2 = 0 (T− = 0); vanishing sub-matrices
are marked in red. The Ab

21-block becomes decoupled and belongs to the |4〉 Bell state
(appendix B.2) for u � 1, which therefore represents the steady state of this block. The steady
state of the remainder is a complete mixture. The aim of the feedback control is the unique
selection and stabilization of the maximally entangled state |4〉.
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[28] Averin D V, Möttönen M and Pekola J P 2011 Maxwell’s demon based on a single-electron pump Phys. Rev.

B 84 245448

New Journal of Physics 14 (2012) 123036 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevB.63.115403
http://dx.doi.org/10.1103/PhysRevB.66.041401
http://dx.doi.org/10.1103/PhysRevB.71.201305
http://dx.doi.org/10.1103/PhysRevLett.96.010504
http://dx.doi.org/10.1103/PhysRevLett.99.020501
http://dx.doi.org/10.1103/PhysRevLett.100.160503
http://dx.doi.org/10.1103/PhysRevLett.107.260503
http://dx.doi.org/10.1103/PhysRevLett.105.216803
http://dx.doi.org/10.1103/PhysRevLett.104.080503
http://dx.doi.org/10.1038/nature11505
http://dx.doi.org/10.1103/PhysRevLett.109.240502
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1038/nphys1424
http://dx.doi.org/10.1103/PhysRevLett.107.030506
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1103/PhysRevA.76.042319
http://dx.doi.org/10.1103/PhysRevB.77.180502
http://dx.doi.org/10.1103/PhysRevLett.105.246804
http://dx.doi.org/10.1088/1367-2630/11/8/083017
http://dx.doi.org/10.1103/PhysRevA.79.032317
http://dx.doi.org/10.1063/1.120104
http://dx.doi.org/10.1126/science.280.5367.1238
http://dx.doi.org/10.1103/PhysRevLett.105.060602
http://dx.doi.org/10.1103/PhysRevB.84.085418
http://dx.doi.org/10.1103/PhysRevB.84.245448
http://www.njp.org/


21

[29] Esposito M and Schaller G 2012 Stochastic thermodynamics for Maxwell demon feedbacks Europhys. Lett.
99 30003

[30] Stockton J K, van Handel R and Mabuchi H 2004 Deterministic Dicke-state preparation with continuous
measurement and control Phys. Rev. A 70 022106

[31] Wang J, Wiseman H M and Milburn G J 2005 Dynamical creation of entanglement by homodyne-mediated
feedback Phys. Rev. A 71 042309

[32] Carvalho A R R and Hope J J 2007 Stabilizing entanglement by quantum-jump-based feedback Phys. Rev. A
76 010301

[33] Carvalho A R R, Reid A J S and Hope J J 2008 Controlling entanglement by direct quantum feedback Phys.
Rev. A 78 012334

[34] Liu Z, Kuang L, Hu K, Xu L, Wei S, Guo L and Li X-Q 2010 Deterministic creation and stabilization of
entanglement in circuit QED by homodyne-mediated feedback control Phys. Rev. A 82 032335

[35] Hofmann H F, Mahler G and Hess O 1998 Quantum control of atomic systems by homodyne detection and
feedback Phys. Rev. A 57 4877–88

[36] Wang J and Wiseman H M 2001 Feedback-stabilization of an arbitrary pure state of a two-level atom Phys.
Rev. A 64 063810

[37] Jordan A N and Korotkov A N 2006 Qubit feedback and control with kicked quantum nondemolition
measurements: a quantum Bayesian analysis Phys. Rev. B 74 085307

[38] Pöltl C, Emary C and Brandes T 2011 Feedback stabilization of pure states in quantum transport Phys. Rev.
B 84 085302

[39] Kießlich G, Schaller G, Emary C and Brandes T 2011 Charge qubit purification by an electronic feedback
loop Phys. Rev. Lett. 107 050501

[40] Emary C 2012 Delayed feedback control in quantum transport arXiv:1207.2910
[41] Shulman M D, Dial O E, Harvey S P, Bluhm H, Umansky V and Yacoby A 2012 Demonstration of

entanglement of electrostatically coupled singlet–triplet qubits Science 13 202
[42] Rubin M H 1982 On the control of quantum statistical systems J. Stat. Phys. 82 177
[43] Poyatos J F, Cirac J I and Zoller P 1996 Quantum reservoir engineering with laser cooled trapped ions Phys.

Rev. Lett. 77 4728–31
[44] Beige A, Braun D, Tregenna B and Knight P L 2000 Quantum computing using dissipation to remain in a

decoherence-free subspace Phys. Rev. Lett. 85 1762–5
[45] Verstraete F, Wolf M M and Cirac J I 2009 Quantum computation and quantum-state engineering driven by

dissipation Nature Phys. 5 633
[46] Diehl S, Rico E, Baranov M A and Zoller P 2011 Topology by dissipation in atomic quantum wires Nature

Phys. 7 971
[47] Koga K and Yamamoto N 2012 Dissipation-induced pure Gaussian state Phys. Rev. A 85 022103
[48] Vollbrecht K G H, Muschik C A and Cirac J I 2011 Entanglement distillation by dissipation and continuous

quantum repeaters Phys. Rev. Lett. 107 120502
[49] Lloyd S and Viola L 2001 Engineering quantum dynamics Phys. Rev. A 65 010101
[50] Ticozzi F and Viola L 2012 Stabilizing entangled states with quasi-local quantum dynamical semigroups Phil.

Trans. R. Soc. A 28 5259
[51] Breuer H-P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[52] Schaller G, Kießlich G and Brandes T 2009 Transport statistics of interacting double dot systems: coherent

and non-Markovian effects Phys. Rev. B 80 245107
[53] Gurvitz S A and Prager Ya S 1996 Microscopic derivation of rate equations for quantum transport Phys. Rev.

B 53 15932
[54] Gurvitz S A and Mozyrsky D 2008 Quantum mechanical approach to decoherence and relaxation generated

by fluctuating environment Phys. Rev. B 77 075325
[55] Kießlich G, Schaller G, Emary C and Brandes T 2009 Single spin transport spectroscopy: current blockade

and spin decay Appl. Phys. Lett. 95 152104

New Journal of Physics 14 (2012) 123036 (http://www.njp.org/)

http://dx.doi.org/10.1209/0295-5075/99/30003
http://dx.doi.org/10.1103/PhysRevA.70.022106
http://dx.doi.org/10.1103/PhysRevA.71.042309
http://dx.doi.org/10.1103/PhysRevA.76.010301
http://dx.doi.org/10.1103/PhysRevA.78.012334
http://dx.doi.org/10.1103/PhysRevA.82.032335
http://dx.doi.org/10.1103/PhysRevA.57.4877
http://dx.doi.org/10.1103/PhysRevA.64.063810
http://dx.doi.org/10.1103/PhysRevB.74.085307
http://dx.doi.org/10.1103/PhysRevB.84.085302
http://dx.doi.org/10.1103/PhysRevLett.107.050501
http://arxiv.org/abs/1207.2910
http://dx.doi.org/10.1126/science.1217692
http://dx.doi.org/10.1007/BF01011631
http://dx.doi.org/10.1103/PhysRevLett.77.4728
http://dx.doi.org/10.1103/PhysRevLett.85.1762
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1103/PhysRevA.85.022103
http://dx.doi.org/10.1103/PhysRevLett.107.120502
http://dx.doi.org/10.1103/PhysRevA.65.010101
http://dx.doi.org/10.1098/rsta.2011.0485
http://dx.doi.org/10.1103/PhysRevB.80.245107
http://dx.doi.org/10.1103/PhysRevB.53.15932
http://dx.doi.org/10.1103/PhysRevB.77.075325
http://dx.doi.org/10.1063/1.3243693
http://www.njp.org/


22

[56] Brandes T 2005 Coherent and collective quantum optical effects in mesoscopic systems Phys. Rep. 408 315
[57] Trauzettel B, Jordan A N, Beenakker C W J and Büttiker M 2006 Parity meter for charge qubits: an efficient

quantum entangler Phys. Rev. B 73 235331
[58] Williams N S and Jordan A N 2008 Entanglement genesis under continuous parity measurement Phys. Rev.

A 78 062322
[59] Schaller G, Kießlich G and Brandes T 2010 Counting statistics in multi-stable systems Phys. Rev. B 81 205305
[60] Zhang J, Vala J, Sastry S and Whaley K B 2003 Exact two-qubit universal quantum circuit Phys. Rev. Lett.

91 027903
[61] Schaller G 2012 Fighting decoherence by feedback-controlled dissipation Phys. Rev. A 85 062118

New Journal of Physics 14 (2012) 123036 (http://www.njp.org/)

http://dx.doi.org/10.1016/j.physrep.2004.12.002
http://dx.doi.org/10.1103/PhysRevB.73.235331
http://dx.doi.org/10.1103/PhysRevA.78.062322
http://dx.doi.org/10.1103/PhysRevB.81.205305
http://dx.doi.org/10.1103/PhysRevLett.91.027903
http://dx.doi.org/10.1103/PhysRevA.85.062118
http://www.njp.org/

	1. Introduction
	2. Quantum state engineering
	3. The feedback scheme
	3.1. Hamiltonian
	3.2. Equation of motion
	3.3. Effective Hamiltonian
	3.4. Feedback stabilization

	4. Applications of the feedback scheme
	4.1. A single-electron quantum system: a dissipative charge qubit
	4.2. Two interacting charge qubits: entanglement stabilization

	5. Conclusions
	Acknowledgment
	Appendix A.  Derivation of the quantum master equation under feedback control 
	Appendix B.  Coupled qubits without a detector 
	Appendix C.  Coulomb interaction in the detector--qubit geometry 
	Appendix D.  The quantum master equation---coupled qubits 
	References

