66 research outputs found

    A Lindenstrauss theorem for some classes of multilinear mappings

    Get PDF
    Under some natural hypotheses, we show that if a multilinear mapping belongs to some Banach multlinear ideal, then it can be approximated by multilinear mappings belonging to the same ideal whose Arens extensions simultaneously attain their norms. We also consider the class of symmetric multilinear mappings.Comment: 11 page

    Spectra of weighted algebras of holomorphic functions

    Full text link
    We consider weighted algebras of holomorphic functions on a Banach space. We determine conditions on a family of weights that assure that the corresponding weighted space is an algebra or has polynomial Schauder decompositions. We study the spectra of weighted algebras and endow them with an analytic structure. We also deal with composition operators and algebra homomorphisms, in particular to investigate how their induced mappings act on the analytic structure of the spectrum. Moreover, a Banach-Stone type question is addressed.Comment: 25 pages Corrected typo

    A Note on the Symmetry of Sequence Spaces

    Full text link
    [EN] We give a self-contained treatment of symmetric Banach sequence spaces and some of their natural properties. We are particularly interested in the symmetry of the norm and the existence of symmetric linear functionals. Many of the presented results are known or commonly accepted, but are not found in the literature.D. Carando and M. Mazzitelli were supported by CONICET-PIP 11220130100329CO, ANPCyT PICT 2015-2299 and PICT 2018-4104. P. Sevilla-Peris was supported by MICINN and FEDER project MTM2017-83262-C2-1-PCarando, D.; Mazzitelli, M.; Sevilla Peris, P. (2021). A Note on the Symmetry of Sequence Spaces. Mathematical Notes. 110(1-2):26-40. https://doi.org/10.1134/S000143462107003826401101-

    A note on abscissas of Dirichlet series

    Full text link
    [EN] We present an abstract approach to the abscissas of convergence of vector-valued Dirichlet series. As a consequence we deduce that the abscissas for Hardy spaces of Dirichlet series are all equal. We also introduce and study weak versions of the abscissas for scalar-valued Dirichlet series.A. Defant: Partially supported by MINECO and FEDER MTM2017-83262-C2-1-P. A. Pérez: Supported by La Caixa Foundation, MINECO and FEDER MTM2014-57838-C2-1-P and Fundación Séneca - Región de Murcia (CARM 19368/PI/14). P. Sevilla-Peris: Supported by MINECO and FEDER MTM2017-83262-C2-1-P.Defant, A.; Pérez, A.; Sevilla Peris, P. (2019). A note on abscissas of Dirichlet series. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(3):2639-2653. https://doi.org/10.1007/s13398-019-00647-yS263926531133Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Mon. Math. 136(3), 203–236 (2002)Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann Math. 32(3), 600–622 (1931)Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen anns\sum \,\frac{a_n}{n^s} ∑ a n n s . Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl., pp. 441–488 (1913)Bonet, J.: Abscissas of weak convergence of vector valued Dirichlet series. J. Funct. Anal. 269(12), 3914–3927 (2015)Carando, D., Defant, A., Sevilla-Peris, P.: Bohr’s absolute convergence problem for Hp\cal{H}_p H p -Dirichlet series in Banach spaces. Anal. PDE 7(2), 513–527 (2014)Carando, D., Defant, A., Sevilla-Peris, P.: Some polynomial versions of cotype and applications. J. Funct. Anal. 270(1), 68–87 (2016)Defant, A., García, D., Maestre, M., Pérez-García, D.: Bohr’s strip for vector valued Dirichlet series. Math. Ann. 342(3), 533–555 (2008)Defant, A., García, D., Maestre, M., Sevilla–Peris, P.: Dirichlet Series and Holomorphic Funcions in High Dimensions, vol. 37 of New Mathematical Monographs. Cambridge University Press, Cambridge (2019)Defant, A., Pérez, A.: Optimal comparison of the pp p -norms of Dirichlet polynomials. Israel J. Math. 221(2), 837–852 (2017)Defant, A., Pérez, A.: Hardy spaces of vector-valued Dirichlet series. Studia Math. 243(1), 53–78 (2018)Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators, vol. 43 of Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge (1995)Maurizi, B., Queffélec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16(5), 676–692 (2010)Queffélec, H., Queffélec, M.: Diophantine approximation and Dirichlet series, vol. 2 of Harish–Chandra research institute lecture notes. Hindustan Book Agency, New Delhi (2013

    Diagonal extendible multilinear operators between l(p)-spaces

    Get PDF
    [EN] We study extendibility of diagonal multilinear operators from l(p) to l(p) spaces. We determine the values of and for which every diagonal -linear operator is extendible, and those for which the only extendible ones are integral. We address the same question for multilinear forms on l(p).D. Carando, V. Dimant and R. Villafane were partially supported by CONICET PIP 0624 and UBACyT 20020100100746. P. Sevilla-Peris was supported by MICINN Project MTM2011-22417. R. Villafane has a doctoral fellowship from CONICET.Carando, D.; Dimant, V.; Sevilla Peris, P.; Villafañe, R. (2014). Diagonal extendible multilinear operators between l(p)-spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas (RACSAM). 108(2):541-555. https://doi.org/10.1007/s13398-013-0125-7S5415551082Alencar, R.: Multilinear mappings of nuclear and integral type. Proc. Am. Math. Soc. 94(1), 33–38 (1985)Alencar, R., Matos, M.: Some classes of multilinear mappings between Banach spaces. Pub. Dep. An. Mat. Univ. Complut. Madrid 12 (1989)Blei, R.C.: Multilinear measure theory and the Grothendieck factorization theorem. Proc. Lond. Math. Soc. 56(3), 529–546 (1988)Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. (2) 32(3), 600–622 (1931)Botelho, G., Braunss, H., Junek, H., Pellegrino, D.: Holomorphy types and ideals of multilinear mappings. Studia Math. 177, 43–65 (2006)Botelho, G., Michels, C., Pellegrino, D.: Complex interpolation and summability properties of multilinear operators. Rev. Mat. Complut. 23(1), 139–161 (2010)Botelho, G., Pellegrino, D.: Two new properties of ideals of polynomials and applications. Indag. Math. (N.S.) 16157–16169 (2005)Botelho, G., Pellegrino, D.: When every multilinear mapping is multiple summing. Math. Nachr. 282(10), 1414–1422 (2009)Çalışkan, E., Pellegrino, D.: On the multilinear generalizations of the concept of absolutely summing operators. Rocky Mt. J. Math. 37, 1137–1154 (2007)Carando, D.: Extendibility of polynomials and analytic functions on p\ell _{p} . Studia Math. 145(1), 63–73 (2001)Carando, D., Dimant, V., Muro, S.: Coherent sequences of polynomial ideals on Banach spaces. Math. Nachr. 282(8), 1111–1133 (2009)Carando, D., Dimant, V., Sevilla-Peris, P.: Limit orders and multilinear forms on p\ell _p spaces. Publ. Res. Inst. Math. Sci. 42(2), 507–522 (2006)Carando, D., Dimant, V., Sevilla-Peris, P.: Multilinear Hölder - type inequalities on Lorentz sequence spaces. Studia Math. 195(2), 127–146 (2009)Carando, D., Lassalle, S.: Extension of vector-valued integral polynomials. J. Math. Anal. Appl. 307(1), 77–85 (2005)Carando, D., Sevilla-Peris, P.: Extendibility of bilinear forms on Banach sequence spaces. Israel J. Math., arXiv:1212.0777 (to appear)Castillo, J., García, R., Jaramillo, J.A.: Extension of bilinear forms on Banach spaces. Proc. Am. Math. Soc. 129(12), 3647–3656 (2001)Carl, B.: A remark on pp -integral and pp -absolutely summing operators from u\ell _u into v\ell _v . Studia Math. 57(3), 257–262 (1976)Defant, A., Floret, K.: Tensor norms and operator ideals. North Holland, Amsterdam (1993)Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators. Cambridge University Press, Cambridge (1995)Dineen, S.: Complex analysis on infinite dimensional spaces. Springer-Verlag, London (1999)Jarchow, H., Palazuelos, C., Pérez-García, D., Villanueva, I.: Hahn–Banach extension of multilinear forms and summability. J. Math. Anal. Appl. 336(2), 1161–1177 (2007)Kirwan, P., Ryan, R.: Extendibility of homogeneous polynomials on Banach spaces. Proc. Am. Math. Soc. 126(4), 1023–1029 (1998)König, H.: Diagonal and convolution operators as elements of operator ideals. Math. Ann. 218(2), 97–106 (1975)Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II. Springer, Berlin (1977)Matos, M.: Absolutely summing holomorphic mappings. An. Acad. Bras. Ci. 68, 1–13 (1996)Maurizi, B., Queffélec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16(5), 676–692 (2010)Mujica, J.: Complex analysis in Banach spaces. North-Holland mathematics studies, vol. 120, North-Holland (1986)Pérez-García, D.: Comparing different classes of absolutely summing multilinear operators. Arch. Math. (Basel) 85(3), 258–267 (2005)García Pérez, D.: The trace class is a QQ -algebra. Ann. Acad. Sci. Fenn. Math. 31(2), 287–295 (2006)Pietsch, A.: Operator ideals. Mathematische monographien (Mathematical monographs), 16. VEB Deutscher Verlag der Wissenschaften, Berlin (1978)Pisier, G.: Counterexamples to a conjecture of Grothendieck. Acta Math. 151(3–4), 181–208 (1983)Ryan, R: Introduction to tensor products of Banach spaces. Springer monographs in mathematics, Springer-Verlag, London (2002)Villanueva, I.: Integral mappings between Banach spaces. J. Math. Anal. Appl. 279(1), 56–70 (2003

    Extendibility of bilinear forms on banach sequence spaces

    Get PDF
    [EN] We study Hahn-Banach extensions of multilinear forms defined on Banach sequence spaces. We characterize c(0) in terms of extension of bilinear forms, and describe the Banach sequence spaces in which every bilinear form admits extensions to any superspace.The second author was supported by MICINN Project MTM2011-22417.DANIEL CARANDO; Sevilla Peris, P. (2014). Extendibility of bilinear forms on banach sequence spaces. Israel Journal of Mathematics. 199(2):941-954. https://doi.org/10.1007/s11856-014-0003-9S9419541992F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Graduate Texts in Mathematics, Vol. 233, Springer, New York, 2006.R. Arens, The adjoint of a bilinear operation, Proceedings of the American Mathematical Society 2 (1951), 839–848.R. Arens, Operations induced in function classes, Monatshefte für Mathematik 55 (1951), 1–19.R. M. Aron and P. D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bulletin de la Société Mathématique de France 106 (1978), 3–24.S. Banach, Sur les fonctionelles linéaires, Studia Mathematica 1 (1929), 211–216.S. Banach, Théorie des opérations linéaires, (Monogr. Mat. 1) Warszawa: Subwncji Funduszu Narodowej. VII, 254 S., Warsaw, 1932.D. Carando, Extendible polynomials on Banach spaces, Journal of Mathematical Analysis and Applications 233 (1999), 359–372.D. Carando, Extendibility of polynomials and analytic functions on l p, Studia Mathematica 145 (2001), 63–73.D. Carando, V. Dimant and P. Sevilla-Peris, Limit orders and multilinear forms on lp spaces, Publications of the Research Institute for Mathematical Sciences 42 (2006), 507–522.J. M. F. Castillo, R. García, A. Defant, D. Pérez-García and J. Suárez, Local complementation and the extension of bilinear mappings, Mathematical Proceedings of the Cambridge Philosophical Society 152 (2012), 153–166.J. M. F. Castillo, R. García and J. A. Jaramillo, Extension of bilinear forms on Banach spaces, Proceedings of the American Mathematical Society 129 (2001), 3647–3656.P. Cembranos and J. Mendoza, The Banach spaces ℓ ∞(c 0) and c 0(ℓ ∞) are not isomorphic, Journal of Mathematical Analysis and Applications 367 (2010), 461–463.A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, Vol. 176, North-Holland Publishing Co., Amsterdam, 1993.A. Defant and C. Michels, Norms of tensor product identities, Note di Matematica 25 (2005/06), 129–166.J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, Vol. 43, Cambridge University Press, Cambridge, 1995.D. J. H. Garling, On symmetric sequence spaces, Proceedings of the London Mathematical Society (3) 16 (1966), 85–106.A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1–79.H. Hahn, Über lineare Gleichungssysteme in linearen Räumen, Journal für die Reine und Angewandte Mathematik 157 (1927), 214–229.R. C. James, Bases and reflexivity of Banach spaces, Annals of Mathematics (2) 52 (1950), 518–527.H. Jarchow, C. Palazuelos, D. Pérez-García and I. Villanueva, Hahn-Banach extension of multilinear forms and summability, Journal of Mathematical Analysis and Applications 336 (2007), 1161–1177.W. B. Johnson and L. Tzafriri, On the local structure of subspaces of Banach lattices, Israel Journal of Mathematics 20 (1975), 292–299.P. Kirwan and R. A. Ryan, Extendibility of homogeneous polynomials on Banach spaces, Proceedings of the American Mathematical Society 126 (1998), 1023–1029.J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in Lp-spaces and their applications, Studia Mathematica 29 (1968), 275–326.J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Vol. 97, Springer-Verlag, Berlin, 1979. Function spaces.G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conference Series in Mathematics, Vol. 60, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986.M. Fernndez-Unzueta and A. Prieto, Extension of polynomials defined on subspaces, Mathematical Proceedings of the Cambridge Philosophical Society 148 (2010), 505–518.W. L. C. Sargent, Some sequence spaces related to the lp spaces, Journal of the London Mathematical Society 35 (1960), 161–171.N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 38, Longman Scientific & Technical, Harlow, 1989

    Almost sure-sign convergence of Hardy-type Dirichlet series

    Get PDF
    [EN] Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series is uniformly a.s.- sign convergent (i.e., converges uniformly for almost all sequences of signs epsilon (n) = +/- 1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space.Supported by CONICET-PIP 11220130100329CO, PICT 2015-2299 and UBACyT 20020130100474BA. Supported by MICINN MTM2017-83262-C2-1-P. Supported by MICINN MTM2017-83262-C2-1-P and UPV-SP20120700.Carando, D.; Defant, A.; Sevilla Peris, P. (2018). Almost sure-sign convergence of Hardy-type Dirichlet series. Journal d Analyse Mathématique. 135(1):225-247. https://doi.org/10.1007/s11854-018-0034-yS2252471351A. Aleman, J.-F. Olsen, and E. Saksman, Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN 16 (2014), 4368–4378.R. Balasubramanian, B. Calado, and H. Queffélec, The Bohr inequality for ordinary Dirichlet series Studia Math. 175 (2006), 285–304.F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136 (2002), 203–236.F. Bayart, A. Defant, L. Frerick, M. Maestre, and P. Sevilla-Peris, Monomial series expansion of Hp-functions and multipliers ofHp-Dirichlet series, Math. Ann. 368 (2017), 837–876.F. Bayart, D. Pellegrino, and J. B. Seoane-Sepúlveda, The Bohr radius of the n-dimensional polydisk is equivalent to (logn)/n\sqrt {\left( {\log n} \right)/n} ( log n ) / n , Adv. Math. 264 (2014), 726–746.F. Bayart, H. Queffélec, and K. Seip, Approximation numbers of composition operators on Hp spaces of Dirichlet series, Ann. Inst. Fourier (Grenoble) 66 (2016), 551–588.H. F. Bohnenblust and E. Hille. On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), 600–622.H. Bohr, Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen anns\sum {\frac{{{a_n}}}{{{n^s}}}} ∑ a n n s , Nachr. Ges.Wiss. Göttingen, Math. Phys. Kl., 1913, pp. 441–488.D. Carando, A. Defant, and P. Sevilla-Peris, Bohr’s absolute convergence problem for Hp- Dirichlet series in Banach spaces, Anal. PDE 7 (2014), 513–527.D. Carando, A. Defant, and P. Sevilla-Peris, Some polynomial versions of cotype and applications, J. Funct. Anal. 270 (2016), 68–87.B. J. Cole and T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3) 53 (1986), 112–142.R. de la Bretèche. Sur l’ordre de grandeur des polynômes de Dirichlet, Acta Arith. 134 (2008), 141–148.A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounäies, and K. Seip, The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2) 174 (2011), 485–497.A. Defant, D. García, M. Maestre, and D. Pérez-García, Bohr’s strip for vector valued Dirichlet series, Math. Ann. 342 (2008), 533–555.A. Defant, M. Maestre, and U. Schwarting, Bohr radii of vector valued holomorphic functions, Adv. Math. 231 (2012), 2837–2857.A. Defant and A. Pérez, Hardy spaces of vector-valued Dirichlet series, StudiaMath. (to appear), 2018 DOI: 10.4064/sm170303-26-7.A. Defant, U. Schwarting, and P. Sevilla-Peris, Estimates for vector valued Dirichlet polynomials, Monatsh. Math. 175 (2014), 89–116.J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.P. Hartman, On Dirichlet series involving random coefficients, Amer. J. Math. 61 (1939), 955–964.H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L2(0, 1), Duke Math. J. 86 (1997), 1–37.A. Hildebrand, and G. Tenenbaum, Integers without large prime factors, J. Thor. Nombres Bordeaux 5 (1993), 411–484.S. V. Konyagin and H. Queffélec, The translation 1/2 in the theory of Dirichlet series, Real Anal. Exchange 27 (2001/02) 155–175.J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Springer-Verlag, Berlin, 1979.B. Maurizi and H. Queffélec, Some remarks on the algebra of bounded Dirichlet series, J. Fourier Anal. Appl. 16 (2010), 676–692.H. Queffélec, H. Bohr’s vision of ordinary Dirichlet series; old and new results, J. Anal. 3 (1995), 43–60.H. Queffélec and M. Queffélec, Diophantine Approximation and Dirichlet Series, Hindustan Book Agency, New Delhi, 2013.G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge, 1995

    Surveying the spirit of absolute summability on multilinear operators and homogeneous polynomials

    Full text link
    [EN] We draw a fundamental compendium of the most valuable results of the theory of summing linear operators and detail those that are not shared by known multilinear and polynomial extensions of absolutely summing linear operators. The lack of such results in the theory of non-linear summing operators justifies the introduction of a class of polynomials and multilinear operators that satisfies at once all related non-linear results. Surprisingly enough, this class, defined by means of a summing inequality, happens to be the well known ideal of composition with a summing operator.D. Pellegrino acknowledges with thanks the support of CNPq Grant 401735/2013-3-PVE (Linha 2)-Brazil. P. Rueda acknowledges with thanks the support of the Ministerio de Economia y Competitividad (Spain) MTM2011-22417. E. A. Sanchez Perez acknowledges with thanks the support of the Ministerio de Economia y Competitividad (Spain) MTM2012-36740-C02-02.Pellegrino, D.; Rueda, P.; Sánchez Pérez, EA. (2016). Surveying the spirit of absolute summability on multilinear operators and homogeneous polynomials. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 110(1):285-302. https://doi.org/10.1007/s13398-015-0224-8S2853021101Achour, D., Dahia, E., Rueda, P., Sánchez-Pérez, E.A.: Factorization of absolutely continuous polynomials. J. Math. Anal. Appl. 405(1), 259–270 (2013)Albiac, F., Kalton, N.: Topics in Banac Space Theory. Springer, Berlin (2005)Alencar, R., Matos, M.C.: Some classes of multilinear mappings between Banach spaces, Publicaciones del Departamento de Análisis Matemático 12, Universidad Complutense Madrid (1989)Bombal, F., Pérez-García, D., Villanueva, I.: Multilinear extensions of Grothendieck’s theorem. Q. J. Math. 55(4), 441–450 (2004)Botelho, G., Braunss, H.-A., Junek, H., Pellegrino, D.: Holomorphy types and ideals of multilinear mappings. Studia Math. 177, 43–65 (2006)Botelho, G., Pellegrino, D.: Scalar-valued dominated polynomials on Banach spaces. Proc. Am. Math. Soc. 134, 1743–1751 (2006)Botelho, G., Pellegrino, D.: Absolutely summing polynomials on Banach spaces with unconditional basis. J. Math. Anal. Appl. 321, 50–58 (2006)Botelho, G., Pellegrino, D.: Coincidence situations for absolutely summing non-linear mappings. Port. Math. (N.S.) 64(2), 175–191 (2007)Botelho, G., Pellegrino, D., Rueda, P.: Pietsch’s factorization theorem for dominated polynomials. J. Funct. Anal. 243(1), 257–269 (2007)Botelho, G., Pellegrino, D., Rueda, P.: On composition ideals of multilinear mappings and homogeneous polynomials. Publ. Res. Inst. Math. Sci. 43(4), 1139–1155 (2007)Botelho, G., Pellegrino, D., Rueda, P.: A unified Pietsch domination theorem. J. Math. Anal. Appl. 365, 269–276 (2010)Botelho, G., Pellegrino, D., Rueda, P.: Dominated polynomials on infinite dimensional spaces. Proc. Am. Math. Soc. 138(1), 209–216 (2010)Botelho, G., Pellegrino, D., Rueda, P.: Cotype and absolutely summing linear operators. Math. Z. 267(1–2), 1–7 (2011)Botelho, G., Pellegrino, D., Rueda, P.: On Pietsch measures for summing operators and dominated polynomials. Linear Multilinear Algebra 62(7), 860–874 (2014)Çalışkan, E., Pellegrino, D.M.: On the multilinear generalizations of the concept of absolutely summing operators. Rocky Mountain J. Math. 37, 1137–1154 (2007)Carando, D., Dimant, V.: On summability of bilinear operators. Math. Nachr. 259, 3–11 (2003)Carando, D., Dimant, V., Muro, S.: Coherent sequences of polynomial ideals on Banach spaces. Math. Nachr. 282, 1111–1133 (2009)Defant, A., Floret, K.: Tensor norms and operator ideals. North-Holland Mathematics Studies, 176. North-Holland Publishing Co., Amsterdam (1993)Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators. Cambridge University Press, Cambridge (1995)Dimant, V.: Strongly pp p -summing multilinear operators. J. Math. Anal. Appl. 278, 182–193 (2003)Dineen, S.: Complex analysis on infinite-dimensional spaces. Springer, London (1999)Fabian, M., Hájek, P., Montesinos-Santalucía, V., Pelant, J., Zizler, V.: Functional analysis and infinite-dimensional geometry. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 8. Springer, New York (2001)Floret, K.: Natural norms on symmetric tensor products of normed spaces. Note Mat. 17, 153–188 (1997)Geiss, H.: Ideale multilinearer Abbildungen. Diplomarbeit, Brandenburgische Landeshochschule (1985)Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques (French). Bol. Soc. Mat. São Paulo 8, 1–79 (1953)Jarchow, H., Palazuelos, C., Pérez-García, D., Villanueva, I.: Hahn-Banach extension of multilinear forms and summability. J. Math. Anal. Appl. 336, 1161–1177 (2007)Lindenstrauss, J., Pełczyński, A.: Absolutely summing operators in Lp{\cal L}_{p} L p spaces and their applications. Studia Math. 29, 275–326 (1968)Matos, M.C.: Absolutely summing holomorphic mappings. Anais da Academia Brasileira de Ciências 68, 1–13 (1996)Matos, M.C.: Fully absolutely summing and Hilbert–Schmidt multilinear mappings. Collectanea Math. 54, 111–136 (2003)Matos, M.C.: Nonlinear absolutely summing mappings. Math. Nachr. 258, 71–89 (2003)Meléndez, Y., Tonge, A.: Polynomials and the Pietsch domination theorem. Proc. R. Irish Acad. Sect. A 99, 195–212 (1999)Montanaro, A.: Some applications of hypercontractive inequalities in quantum information theory. J. Math. Phys. 53(12), 122–206 (2012)Mujica, J.: Complex analysis in Banach spaces. Dover Publications, Mineola (2010)Pellegrino, D.: Cotype and absolutely summing homogeneous polynomials in Lp{\cal L}_{p} L p spaces. Studia Math. 157, 121–131 (2003)Pellegrino, D., Ribeiro, J.: On multi-ideals and polynomial ideals of Banach spaces: a new approach to coherence and compatibility. Monatsh. Math. 173(3), 379–415 (2014)Pellegrino, D., Santos, J.: A general Pietsch domination theorem. J. Math. Anal. Appl. 375, 371–374 (2011)Pellegrino, D., Santos, J.: Absolutely summing multilinear operators: a panorama. Quaest. Math. 34(4), 447–478 (2011)Pellegrino, D., Santos, J.: On summability of nonlinear mappings: a new approach. Math. Z. 270(1–2), 189–196 (2012)Pellegrino, D., Santos, J., Seoane-Sepúlveda, J.B.: Some techniques on nonlinear analysis and applications. Adv. Math. 229, 1235–1265 (2012)Pérez-García, D.: David Comparing different classes of absolutely summing multilinear operators. Arch. Math. (Basel) 85(3), 258–267 (2005)Pietsch, A.: Absolut p-summierende Abbildungen in normierten Räumen. (German) Studia Math. 28, 333–353 (1966/1967)Pietsch, A.: Ideals of multilinear functionals (designs of a theory). Proceedings of the second international conference on operator algebras, ideals, and their applications in theoretical physics (Leipzig, 1983), 185–199, Teubner-Texte Math., 67, Teubner, Leipzig, (1984)Pisier, G.: Grothendieck’s theorem, past and present. Bull. Am. Math. Soc. (N.S.) 49(2), 237–323 (2012)Rueda, P., Sánchez-Pérez, E.A.: Factorization of pp p -dominated polynomials through LpL^{p} L p -spaces. Michigan Math. J. 63(2), 345–353 (2014)Rueda, P., Sánchez-Pérez, E.A.: Factorization theorems for homogeneous maps on Banach function spaces and approximation of compact operators. Mediterr. J. Math. 12(1), 89–115 (2015)Ryan, R.A.: Applications of Topological Tensor Products to Infinite Dimensional Holomorphy, Ph.D. Thesis, Trinity College, Dublin, (1980

    Factorization of absolutely continuous polynomials

    Full text link
    In this paper we study the ideal of dominated (p,s)-continuous polynomials, that extend the nowadays well known ideal of p-dominated polynomials to the more general setting of the interpolated ideals of polynomials. We give the polynomial version of Pietsch s factorization Theorem for this new ideal. Our factorization theorem requires new techniques inspired in the theory of Banach lattices.The authors thank the referee for his/her suggestions. D. Achour acknowledges with thanks the support of the Ministere de l'Enseignament Superieur et de la Recherche Scientifique (Algeria) under project PNR 8-U28-181. E. Dahia acknowledges with thanks the support of the Ministere de l'Enseignament Superieur et de la Recherche Scientifique (Algeria) under grant 170/PGRS/C.U.K.M(2012) for short term stage. P. Rueda acknowledges with thanks the support of the Ministerio de Economia y Competitividad (Spain) MTM2011-22417. E.A. Sanchez Perez acknowledges with thanks the support of the Ministerio de Economia y Competitividad (Spain) MTM2012-36740-C02-02.Achour, D.; Dahia, E.; Rueda, P.; Sánchez Pérez, EA. (2013). Factorization of absolutely continuous polynomials. Journal of Mathematical Analysis and Applications. 405:259-270. https://doi.org/10.1016/j.jmaa.2013.03.063S25927040

    Unbounded violation of tripartite Bell inequalities

    Get PDF
    We prove that there are tripartite quantum states (constructed from random unitaries) that can lead to arbitrarily large violations of Bell inequalities for dichotomic observables. As a consequence these states can withstand an arbitrary amount of white noise before they admit a description within a local hidden variable model. This is in sharp contrast with the bipartite case, where all violations are bounded by Grothendieck's constant. We will discuss the possibility of determining the Hilbert space dimension from the obtained violation and comment on implications for communication complexity theory. Moreover, we show that the violation obtained from generalized GHZ states is always bounded so that, in contrast to many other contexts, GHZ states do in this case not lead to extremal quantum correlations. The results are based on tools from the theories of operator spaces and tensor norms which we exploit to prove the existence of bounded but not completely bounded trilinear forms from commutative C*-algebras.Comment: Substantial changes in the presentation to make the paper more accessible for a non-specialized reade
    corecore