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Under some natural hypotheses, we show that if a multilinear mapping belongs 
to some Banach multilinear ideal, then it can be approximated by multilinear 
mappings belonging to the same ideal all whose Arens extensions attain their norms 
at the same point. We prove a similar result for the class of symmetric multilinear 
mappings. We see that the quantitative (Bollobás-type) version of these results fails 
in every multilinear ideal.
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0. Introduction

The Bishop–Phelps theorem [11,12] is an elementary and significant result about continuous linear func-
tionals and convex sets. The most quoted version asserts that the set of linear functionals in X ′ (the dual 
space of a Banach space X) which attain their supremum on the unit ball of X is norm-dense in X ′. Lin-
denstrauss showed that this is not true, in general, for linear bounded operators between two Banach spaces 
X and Y [33]; while he proved that the set of bounded linear operators, whose second adjoints attain their 
norm, is always dense in the space of all bounded operators. This result was later extended for multilinear 
mappings by Acosta, García and Maestre [7]. These kinds of results are referred to as Lindenstrauss-type 
theorems.
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Regarding multilinear mappings, the Bishop–Phelps theorem fails, in general, even for scalar-valued 
bilinear forms [2,24]. In order to handle the study of Lindenstrauss-type multilinear results, the Arens 
extensions come into scene [8]. The first result in this setting was given by Acosta [1] who proved that the 
set of bilinear forms on a product of two Banach spaces X and Y such that their Arens extensions are norm 
attaining is dense in the space of bilinear forms L(2X × Y ). Aron, García and Maestre [10] obtained an 
improvement by showing that the set of those mappings in L(2X × Y ), such that the two possible Arens 
extensions attain the norm at the same element of X×Y , is dense in L(2X×Y ). This last result is stronger 
than the previous one since there exist bilinear mappings such that only one of their Arens extensions attains 
the norm [10]. In [7], the authors prove that the strongest version holds with full generality for multilinear 
mappings. They also give several positive results of the kind for some multilinear ideals considering the ideal 
norm instead of the supremum norm.

In this paper, we show that a multilinear Lindenstrauss theorem holds for any ideal of 3-linear forms 
and, as a consequence, we obtain the same result for any regular ideal of bilinear mappings. More generally, 
we prove in Theorem 1.2 that an N -linear Lindenstrauss theorem holds for any N ∈ N, for a wide class of 
multilinear ideals which preserve some algebraic structure related to multiplicativity (we say these ideals 
are stable). Our results include the classes of nuclear, integral, extendible, multiple p-summing mappings 
(1 ≤ p < ∞). Also, if we consider multilinear mappings on Hilbert spaces, the class of Hilbert–Schmidt 
and, more generally, the multilinear Schatten classes are encompassed. It was observed in [7] that any ideal 
which is dual to an associative tensor norm satisfies the multilinear Lindenstrauss theorem. These ideals are 
easily seen to be stable, but the converse is not true: the ideal of multiple 2-summing mappings is stable, 
and we show in Proposition 2.3 that it cannot be dual to any associative tensor norm. Our list of examples 
then extends and completes the multilinear ideals treated in [7].

In [21] we give an integral representation formula for the duality between tensor products and poly-
nomials on Banach spaces satisfying appropriate hypotheses. Here, we extend [21, Theorem 2.2] for the 
duality between tensor products and multilinear mappings. As a consequence, we obtain in Theorem 3.1 a 
Lindenstrauss-type theorem for the space of symmetric multilinear mappings Ls(NX; Z), whenever X has 
separable dual with the approximation property and Z is a dual space or a Banach space with the property 
(β) of Lindenstrauss. We also provide examples of Banach spaces for which a Bishop–Phelps-type theorem 
fails, but our Lindenstrauss theorem holds.

Finally, we address quantitative versions of the Bishop–Phelps and Lindenstrauss theorems in ideals of 
multilinear mappings. In [13], Bollobás improved the theorem of Bishop and Phelps showing that it is possible 
not only to approximate linear functionals by norm-attaining ones, but also to ‘somehow’ choose the elements 
where the norm is attained. In the last years, a lot of attention has been paid to Bishop–Phelps–Bollobás-type 
results in the linear, multilinear and polynomial context. We show that the corresponding quantitative 
version of the Lindenstrauss theorem fails for every ideal of multilinear mappings. On the other hand, we 
show the Bishop–Phelps–Bollobás theorem for any ideal of multilinear mappings defined on a product of 
uniformly convex Banach spaces. This extends, to the ideal setting, some results obtained in [4,6,32].

1. Lindenstrauss theorem in multilinear ideals

Let us fix some notation. Throughout this paper X and Y denote Banach spaces, while X ′ and BX

denote respectively the topological dual and the closed unit ball of X. For Banach spaces X1, . . . , XN we 
denote the product space X1×· · ·×XN by X and by L(NX; Y ) the space of continuous N -linear mappings 
Φ: X → Y endowed with the supremum norm. Recall that the Arens extensions of a multilinear function are 
obtained by weak-star density. Each extension depends on the order in which the variables are extended. 
Here we present one of the N ! possible extensions (see [8] and [27, 1.8]). Given Φ ∈ L(NX; Y ), the mapping 
Φ : X ′′

1 × · · · ×X ′′
N → Y ′′ is defined by
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Φ
(
x′′

1 , . . . , x
′′
N

)
= w∗ − lim

α1
· · · lim

αN

Φ(x1,α1 , . . . , xN,αN
) (1)

where (xj,αj
)αj

⊆ Xj is a (bounded) net w∗-convergent to x′′
j ∈ X ′′

j , j = 1, . . . , N . For N = 1 this recovers 
the definition of the bitranspose of a continuous operator. Now, we recall the definition of a multilinear 
ideal.

Definition 1.1. A normed ideal of N -linear mappings is a pair (U , ‖ ·‖U) such that for any N -tuple of Banach 
spaces X = X1 × · · · ×XN satisfies:

(i) U(X; Y ) = U ∩L(NX; Y ) is a linear subspace of L(NX; Y ) for any Banach space Y and ‖ · ‖U is a norm 
on it.

(ii) For any N -tuple of Banach spaces Z = Z1×· · ·×ZN , any Banach space W and operators Ti ∈ L(Zi; Xi), 
1 ≤ i ≤ N , S ∈ L(Y ; W ) and Φ ∈ U(X; Y ), the N -linear mapping S ◦ Φ ◦ (T1, . . . , TN ): Z → W given 
by

S ◦ Φ ◦ (T1, . . . , TN )(z1, . . . , zN ) = S
(
Φ
(
T1(z1), . . . , TN (zN )

))
belongs to U(Z; W ) with ‖S ◦ Φ ◦ (T1, . . . , TN )‖U ≤ ‖S‖‖Φ‖U‖T1‖ · · · ‖TN‖.

(iii) (z1, . . . , zN ) 
→ z1 · · · zN belongs to U(CN ; C) and has norm one.

If (U(X, Y ), ‖ · ‖U ) is complete for every X and Y , we say that (U , ‖ · ‖U ) is a Banach ideal of N -linear 
mappings. In the scalar-valued case, we simply write U(X).

For N ∈ N and j = {j1, . . . , jp} a subset of the initial set {1, . . . , N}, j1 < j2 < · · · < jp, we define 
Pj: X → X the projection given by

Pj(x1, . . . , xN ) := (y1, . . . , yN ), where yk =
{
xk if k ∈ j,
0 if k /∈ j.

If jc denotes the complement of j in {1, . . . , N}, then Pj + Pjc = Id, the identity map on X.
Let us define a rather natural property for multilinear ideals which will ensure the validity of a 

Lindenstrauss-type theorem. Let us say that the ideal of N -linear forms U is stable at X if there exists 
K > 0 such that for all a = (a1, . . . , aN ) ∈ X and all j ⊂ {1, . . . , N}, the function Vj,a: L(NX) → L(NX)
defined by

Vj,a(Φ)(x) = Φ
(
Pj(x) + Pjc(a)

)
Φ
(
Pj(a) + Pjc(x)

)
(2)

satisfies

Vj,a(Φ) ∈ U(X) for all Φ ∈ U(X) and
∥∥Vj,a(Φ)

∥∥
U ≤ K‖Φ‖2

U‖a1‖ · · · ‖aN‖. (3)

In order to see that being stable is a natural property, take N = 4 and j = {1, 2}. In this case, what we 
are imposing to a 4-linear form Φ ∈ U(X) is that the mapping

(x1, x2, x3, x4) 
→ Φ(x1, x2, a3, a4)Φ(a1, a2, x3, x4)

also belongs to U(X) for any (a1, . . . , a4), with some control on the norm. The next result extends [7, 
Theorem 2.1] and [7, Corollary 2.5].
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Theorem 1.2. If the ideal of N -linear forms U is stable at X = X1×· · ·×XN , then the set of N -linear forms 
in U(X) whose Arens extensions attain the supremum-norm at the same N -tuple is ‖ · ‖U -dense in U(X).

Proof. Fix Φ ∈ L(NX). By the proof of [7, Theorem 2.1], there exists a sequence of multilinear mappings 
(Φn)n given recursively by

Φ1 = Φ, Φn+1 = Φn +
∑
j

CnVj,an(Φn),

where (Cn)n is a sequence of positive numbers, (an)n ⊂ X and Vj,an is defined as in (2) for all j ⊂ {1, . . . , N}. 
In [7, Theorem 2.1] it is shown that, given ε > 0, (Cn)n and an can be chosen so that (Φn)n converges to 
an element Ψ ∈ L(NX) whose Arens extensions attain their norm at the same N -tuple and ‖Φ − Ψ‖ < ε.

The stability of U implies that every Φn belongs to U(X) whenever Φ ∈ U(X). Now, the control of the 
norms given in (3) together with a careful reading of the proof of [7, Corollary 2.5] ensure that (Cn)n and 
an can be chosen so that (Φn)n converges to an element Ψ = ‖ · ‖U − limΦn and ‖Φ − Ψ‖U < ε. �

Given an (N + 1)-linear form Φ: X1 × · · · ×XN ×XN+1 → K, we define the associate N -linear mapping 
Φ̃: X1 × · · · ×XN → X ′

N+1 as usual:

Φ̃(x1, . . . , xN )(xN+1) = Φ(x1, . . . , xN , xN+1).

Now, given an ideal of N -linear mappings U we define the ideal of (N + 1)-linear forms Ũ by

Φ ∈ Ũ if and only if Φ̃ ∈ U

and

‖Φ‖Ũ : = ‖Φ̃‖U .

Recall that a Banach ideal U is called regular if JY ◦ Φ ∈ U(X; Y ′′) implies Φ ∈ U(X; Y ) and ‖Φ‖U =
‖JY ◦ Φ‖U , where JY : Y ↪→ Y ′′ is the natural injection. It should be noted that if Φ in the proof of the 
previous theorem is w∗-continuous in the last variable, then so is Ψ . As a consequence, we can proceed as 
in [7, Theorem 2.3] to obtain the following.

Corollary 1.3. With the notation above, if U is regular and Ũ is stable at X1 × · · · ×XN × Y ′, then the set 
of N -linear mappings in U(X; Y ) such that their Arens extensions attain the supremum-norm at the same 
N -tuple is ‖ · ‖U -dense in U(X; Y ).

We will see that most of the known examples of multilinear ideals are stable and, then, satisfy a 
Lindenstrauss-type theorem. First, let us see that this property is fulfilled for every ideal of 3-linear forms. 
Hence, we have a Lindenstrauss theorem for ideals of 3-linear forms and regular ideals of bilinear mappings.

Corollary 1.4. Let (U , ‖ · ‖U ) be a Banach ideal of 3-linear forms. Then, for every X = X1 ×X2 ×X3, the 
set of 3-linear forms in U(X) whose Arens extensions attain the supremum-norm at the same 3-tuple is 
‖ · ‖U -dense in U(X).

Proof. By Theorem 1.2, it suffices to prove that U(X) is stable. Take Φ ∈ U(X), a = (a1, a2, a3) ∈ X with 
‖ak‖ = 1 for 1 ≤ k ≤ 3 and take j ⊂ {1, 2, 3}. We proceed to show that (3) is satisfied for j = {1, 2}, the 
other cases are analogous.
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Consider the linear operator TΦ: X3 → X3 defined by TΦ(x3) = Φ(a1, a2, x3)a3. Then ‖TΦ‖ ≤ ‖Φ‖ ≤ ‖Φ‖U
and

Vj,a(Φ)(x) = Φ(x1, x2, a3)Φ(a1, a2, x3) = Φ
(
x1, x2, TΦ(x3)

)
= Φ ◦ (I, I, TΦ)(x1, x2, x3).

Since (U , ‖ · ‖U ) is a Banach ideal, Vj,a(Φ) ∈ U(X) and ‖Vj,a(Φ)‖U ≤ ‖Φ‖2
U . �

Now the following corollary is immediate.

Corollary 1.5. Let (U , ‖ · ‖U ) be a regular Banach ideal of bilinear mappings and let X1, X2, Y be Banach 
spaces. The set of bilinear mappings in U(X1 ×X2; Y ) whose Arens extensions attain the supremum-norm 
at the same pair is ‖ · ‖U -dense in U(X1 ×X2; Y ).

2. Examples of multilinear ideals satisfying a Lindenstrauss theorem

Let us start with the simplest examples. Any finite type multilinear form on X1×· · ·×XN (i.e. any linear 
combinations of products of linear forms) has a unique Arens extension to X ′′

1 ×· · ·×X ′′
N which is weak-star 

continuous on each coordinate. By the Banach–Alaoglu theorem, this extension attains its supremum norm. 
As a consequence, every Banach ideal in which finite type multilinear forms are dense satisfies the multilinear 
Lindenstrauss theorem. This is the case, for instance, of the ideal of nuclear multilinear forms. More generally, 
if U is a minimal ideal of multilinear forms, the finite type multilinear forms are dense in U [29,30] and 
Lindenstrauss theorem trivially holds.

As observed in [7], if U is an ideal of multilinear forms which is dual to an associative tensor norm 
(such as the injective or projective tensor norms ε and π), then U satisfies the multilinear Lindenstrauss 
theorem. We can rephrase their remark in our terminology: ideals which are dual to associative tensor 
norms are always stable. In [7], it is mentioned that the ideal of multiple summing multilinear mappings 
satisfies the Lindenstrauss theorem. We will see that this is truly the case, although this ideal is not dual 
to any associative tensor norm as we show in Proposition 2.3. Actually, it is not very usual for ideals 
of multilinear forms to be dual to associative tensor norms. Fortunately, in order to satisfy a multilinear 
Lindenstrauss theorem (in fact, in order to be stable), a much weaker property is sufficient. Coherent and 
multiplicative ideals of polynomials have been studied (also with different terminologies) in [19,16]. Here, we 
present a multilinear version of these properties (see [15], where similar properties for multilinear mappings 
are considered). To simplify the definitions, we restrict to symmetric ideals, although this is clearly not 
necessary.

Fix N ∈ N and X = X1 × · · · ×XN . If θ is a permutation of {1, . . . , N}, we write

Xθ = Xθ(1) × · · · ×Xθ(N)

and xθ = (xθ(1), . . . , xθ(N)). We say that the ideal of multilinear mappings UN is symmetric if for any 
Φ ∈ UN (X; Y ) and every permutation θ of {1, . . . , N}, the N -linear mapping θΦ: Xθ → Y ,

θΦ(xθ) = Φ(x),

belongs to UN (Xθ; Y ) with ‖θΦ‖UN
= ‖Φ‖UN

.

Definition 2.1. Let U = (Un)n be a sequence where Un is a symmetric Banach ideal of n-linear forms for 
each n ∈ N. We say that U is multiplicative if there exist positive constants C and D such that, for any 
N ∈ N and any X = X1 × · · · ×XN :
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(i) For Φ ∈ UN (X) and aN ∈ XN , the (N − 1)-linear form ΦaN
given by

ΦaN
(x1, . . . , xN−1) = Φ(x1, . . . , xN−1, aN )

belongs to UN−1(X1 × · · · ×XN−1; Y ) and ‖ΦaN
‖UN−1 ≤ C‖Φ‖UN

‖aN‖.
(ii) For Φ ∈ Uk(X1 × · · · ×Xk) and Ψ ∈ UN−k(Xk+1 × · · · ×XN ), the N -linear form Φ · Ψ given by

(Φ · Ψ)(x1, . . . , xN ) = Φ(x1, . . . , xk)Ψ(xk+1, . . . , xN )

belongs to UN (X) and ‖Φ · Ψ‖UN
≤ DN‖Φ‖Uk

‖Ψ‖UN−k
.

It is rather easy to see that if U = (Un)n is a multiplicative sequence of multilinear ideals, then Un is stable 
at any Banach space, for any n ∈ N. What makes this concept interesting in our framework is that most 
of the usual ideals of multilinear forms have been proven to be multiplicative. For example, the ideals of 
nuclear, integral, extendible, multiple p-summing multilinear forms (1 ≤ p < ∞) are multiplicative (see [18,
20,35] for the proof in the polynomial case, the multilinear one being analogous). Then, the Lindenstrauss 
theorem holds for all these ideals. Also, if we consider multilinear forms on Hilbert spaces, the class of 
Hilbert–Schmidt and, more generally, the multilinear Schatten classes are multiplicative. As a consequence, 
since Hilbert spaces are reflexive, these ideals satisfy a multilinear Bishop–Phelps theorem.

We end this section by showing that the ideal of multiple summing mappings is not dual to any associative 
tensor norm.

Definition 2.2. Let 1 ≤ p < ∞. A multilinear form Φ : X1 × · · · ×XN → K is multiple p-summing if there 
exists K > 0 such that for any sequences (xj

ij
)mj

ij=1 ⊆ Xj , j = 1, . . . , N , we have

(
m1,...,mN∑
i1,...,iN=1

∣∣Φ(x1
i1 , . . . , x

N
iN

)∣∣p)1/p

≤ K
N∏
j=1

∥∥(xj
ij

)mj

ij=1

∥∥w
p
. (4)

The least constant K satisfying the inequality is the p-summing norm of T and is denoted by πp(T ). We 
write ΠN

p (X1 × · · · ×XN ) for the space of multiple p-summing forms.

Recall that ΠN
p (X1 ×· · ·×XN ) is the dual of the tensor product X1⊗· · ·⊗XN endowed with the tensor 

norm α̃p(u) [36, Proposition 3.1] (see also [34]) where

α̃p(u) = inf
{

M∑
m=1

∥∥(λm,i1m,...,iNm
)I

1
m,...,IN

m

i1m,...,iNm=1

∥∥
p′

∥∥(x1
m,i1m

)I1
m

i1m=1

∥∥w
p
· · ·

∥∥(x1
m,iNm

)IN
m

iNm=1

∥∥w
p

}
(5)

with 1
p + 1

p′ = 1 and the infimum is taken over all the representations of the form

u =
M∑

m=1

I1
m,...,IN

m∑
i1m,...,iNm=1

λm,i1m,...,iNm
x1
m,i1m

⊗ · · · ⊗ xN
m,iNm

.

Although we know that the (Πn
2 )n is a multiplicative sequence, we have the following.

Proposition 2.3. The ideal ΠN
2 (N ∈ N) of multiple 2-summing forms is not dual to any associative tensor 

norm.
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Proof. Take N = 4 and X1 = · · · = X4 = c0. Suppose that β is an associative tensor norm of order 2 such 
that

Π4
2 (c0 × · · · × c0) 


(
(c0⊗̃βc0)⊗̃β(c0⊗̃βc0)

)′
.

By [14, Theorem 3.1], every multilinear form on c0 is multiple 2-summing. As a consequence, the projective 
tensor norm π and the tensor norm predual to the multiple 2-summing forms should be equivalent on 
c0 ⊗ · · · ⊗ c0. Using this fact first for the 4-fold and then for the 2-fold tensor products, we have

(c0⊗̃πc0)⊗̃π(c0⊗̃πc0) 
 (c0⊗̃βc0)⊗̃β(c0⊗̃βc0) 
 (c0⊗̃πc0)⊗̃β(c0⊗̃πc0).

In [17] it is shown that c0⊗̃πc0 has uniformly complemented copies of �n2 . Then, the isomorphisms given 
above imply that

�n2 ⊗π �n2 
 �n2 ⊗β �n2 ,

uniformly in n ∈ N. The Density Lemma [27, 13.4] then gives

�2 ⊗π �2 
 �2 ⊗β �2,

which means that every bilinear form on �2 × �2 is multiple 2-summing. But in Hilbert spaces, multiple 
2-summing and Hilbert–Schmidt multilinear forms coincide, and clearly there are bilinear forms which are 
not Hilbert–Schmidt. This contradiction completes the proof. �
3. Integral representation and Lindenstrauss theorem for symmetric multilinear mappings

We devote this section to the special class of symmetric multilinear mappings. Since symmetric N -linear 
mappings are defined on X for X1 = · · · = XN = X, we simply write Ls(NX; Z) to denote the space of 
these mappings (with values on a Banach space Z). We prove a Lindenstrauss theorem for Ls(NX; Z) under 
certain hypotheses on X and Z. Recall that a Banach space Z has property (β) of Lindenstrauss, see [33], 
if there exists a subset {(zα, gα): α ∈ Λ} ⊂ Z × Z ′ satisfying:

(i) ‖zα‖ = ‖gα‖ = gα(zα) = 1,
(ii) |gα(zγ)| ≤ λ for α �= γ and some 0 ≤ λ < 1,
(iii) for all z ∈ Z, ‖z‖ = supα∈Λ |gα(z)|.

Examples of spaces with this property are c0, �∞ and C(K) with K having a dense set of isolated points.
Our main result in this section is the following.

Theorem 3.1. Let X be a Banach space whose dual is separable and has the approximation property and 
let Z be a dual space or a Banach space with property (β). Then, every symmetric multilinear mapping 
in Ls(NX; Z) can be approximated by symmetric multilinear mappings whose Arens extensions attain the 
supremum-norm at the same N -tuple.

The proof of Theorem 3.1 is based on the following lemmas. The first one extends to the multilinear setting 
the integral formula for the duality between tensor products and polynomials given in [21, Theorem 2.2]. 
We briefly sketch the corresponding proof. The second lemma extends [25, Theorem 2.1(ii)], stated under 
the framework of Bishop–Phelps-type theorems. We omit its proof which follows the one given in [25] (see 
also [22] where Lemma 3.3 is obtained in the polynomial context).
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Lemma 3.2. Let X = X1 × · · · ×XN be an N -tuple of Banach spaces each of which has separable dual with 

approximation property and let Y be a Banach space. Then, for each u ∈ (
⊗̃N

π,j=1Xj)⊗̃πY , there exists a 
regular Borel measure μu on (BX′′

1
, w∗) × · · · × (BX′′

N
, w∗) × (BY ′′ , w∗) such that ‖μu‖ ≤ ‖u‖π and

〈u, Ψ〉 =
∫

BX′′
1
×···×BX′′

N
×BY ′′

Ψ
(
x′′

1 , . . . , x
′′
N

)(
y′′

)
dμu

(
x′′

1 , . . . , x
′′
N , y′′

)
, (6)

for all Ψ ∈ L(NX; Y ′), where π is the projective tensor norm.

Proof. Since for each j = 1, . . . , N , the space Xj has separable dual with approximation property, a com-
bination of Proposition 3.5 and Theorem 3.10 of [23] ensures that there exists a bounded sequence of finite 
rank operators (T j

n)n on Xj such that both T j
n → IdXj

and (T j
n)′ → IdX′

j
in the strong operator topology.

Now, given Ψ ∈ L(NX; Y ′), for each (n1, . . . , nN ) ∈ N
N we define the finite type multilinear mapping

Ψn1,...,nN
= Ψ ◦

(
T 1
n1
, . . . , TN

nN

)
,

and, proceeding as in [21, Lemma 2.1], we see that the Arens extension of Ψ is given by

Ψ
(
x′′

1 , . . . , x
′′
N

)(
y′′

)
= lim

n1→∞
· · · lim

nN→∞
Ψn1,...,nN

(
x′′

1 , . . . , x
′′
N

)(
y′′

)
. (7)

By the Riesz representation theorem for C((BX′′
1
, w∗) × · · · × (BX′′

N
, w∗) × (BY ′′ , w∗)), there is a regular 

Borel measure μ satisfying (6) for finite type multilinear mappings. Then, by (7), the dominated convergence 
theorem and the density of linear combination of elementary tensors we obtain (6) for every continuous 
N -linear mapping. �
Lemma 3.3. Suppose that Z has property (β). If the Lindenstrauss theorem holds for Ls(NX), then it also 
holds for Ls(NX; Z).

We denote by 
⊗̃N,s

π X the N -fold symmetric tensor product of X endowed with the (full, not symmetric) 
projective tensor norm π. We refer to [28] for general theory on symmetric tensor products.

Proof of Theorem 3.1. Suppose first that Z is a dual space, say Z = Y ′. Take Φ ∈ Ls(NX; Y ′) and ε > 0, 
and consider the associated linear functional

LΦ ∈
((⊗̃N,s

π
X
)
⊗̃πY

)′
.

By the Bishop–Phelps theorem, there exists a norm attaining functional L = LΨ such that ‖Φ − Ψ‖ =
‖LΦ − LΨ‖ < ε, for some Ψ ∈ Ls(NX; Y ′). Take u ∈ (

⊗̃N,s

π X)⊗̃πY with ‖u‖π = 1 such that |LΨ (u)| =
‖LΨ‖ = ‖Ψ‖. By Lemma 3.2, there is a regular Borel measure μu satisfying (6) and hence,

‖Ψ‖ =
∣∣LΨ (u)

∣∣ ≤ ∫
BX′′×···×BX′′×BY ′′

∣∣Ψ(x′′
1 , . . . , x

′′
N

)(
y′′

)∣∣d|μu|
(
x′′

1 , . . . , x
′′
N , y′′

)
≤ ‖Ψ‖‖μu‖ ≤ ‖Ψ‖.

As a consequence, |Ψ(x′′
1 , . . . , x

′′
N )(y′′)| = ‖Ψ‖ almost everywhere (for μu) and Ψ attains its norm. Note that 

changing the order of the iterated limits in (7), we obtain the N ! Arens extensions of Ψ . Then, any of these 
extensions attains its norm almost everywhere for μu. In particular, there exists an N -tuple on which all 
the Arens extensions of Ψ attain their norms simultaneously.
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What we have just proved, implies the Lindenstrauss theorem in the scalar-valued case. Then, Lemma 3.3
gives the result for Z with property (β). �

The following proposition gives the converse of [25, Theorem 2.1]. For our purposes, we only state and 
prove the result concerning symmetric multilinear mappings. Nevertheless, with almost identical proof, the 
result remains valid for (non-necessarily symmetric) multilinear mappings defined on any N -tuple of Banach 
spaces X = X1 × · · · ×XN and for homogeneous polynomials.

Proposition 3.4. The Bishop–Phelps theorem holds for Ls(NX) if and only if it holds for Ls(NX; Z) for 
every (or some) Banach space Z with property (β).

Proof. Thanks to [25, Theorem 2.1(ii)], we only have to prove one implication. Suppose Z has property (β)
and take {(zα, gα): α ∈ Λ} ⊂ Z × Z ′ and 0 ≤ λ < 1 satisfying its definition. Let λ < λ0 < 1, ε < λ0 − λ

and fix ϕ ∈ Ls(NX) with ‖ϕ‖ = 1. Pick any α0 ∈ Λ and consider

Φ(x1, . . . , xN ) = ϕ(x1, . . . , xN )zα0 ∈ Ls

(
NX;Z

)
.

By hypothesis, there exists a Ψ ∈ Ls(NX; Z) with ‖Ψ‖ = 1, attaining its norm at some (a1, . . . , aN ) and 
such that ‖Ψ − Φ‖ < ε. Then, ‖gα ◦ Ψ − gα ◦ Φ‖ < ε for all α ∈ Λ and consequently,

‖gα ◦ Ψ‖ ≤ ε + ‖gα ◦ Φ‖ ≤ ε + λ < λ0 for every α �= α0. (8)

Since

1 =
∥∥Ψ(a1, . . . , aN )

∥∥ = sup
α∈Λ

∣∣gα(Ψ(a1, . . . , aN )
)∣∣,

it follows from (8) that |gα0 ◦ Ψ(a1, . . . , aN )| = ‖gα0 ◦ Ψ‖ = 1. Hence, gα0 ◦ Ψ is norm attaining and 
‖gα0 ◦ Ψ − ϕ‖ < ε. This gives the desired statement. �

We finish this section with some examples of spaces for which the Bishop–Phelps theorem fails, but our 
Lindenstrauss theorem holds. We appeal to the classical preduals of Lorentz sequence spaces recalling only 
their definitions. For further details on these spaces and their applications in norm attainment problems 
see [31,2,21]. By an admissible sequence we mean a decreasing sequence w = (wi)i of nonnegative real 
numbers such that w1 = 1, limi wi = 0 and 

∑
i wi = ∞. Given an admissible sequence w, the predual of the 

Lorentz sequence space d(w, 1) is the space d∗(w, 1) of all the sequences x such that

lim
n→∞

∑n
i=1 x

∗(i)
W (n) = 0

where x∗ = (x∗(i))i is the decreasing rearrangement of x = (x(i))i and W (n) =
∑n

i=1 wi. In this space the 
norm is defined by

‖x‖W := sup
n

∑n
i=1 x

∗(i)
W (n) < ∞.

For short, we denote by NALs(Nd∗(w, 1); Y ) the set of norm attaining mappings in Ls(Nd∗(w, 1); Y ).

Proposition 3.5. Let w be an admissible sequence such that w ∈ �r for some 1 < r < ∞ and let Z be a 
Banach space with property (β).
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(i) NALs(Nd∗(w, 1)) is not dense in Ls(Nd∗(w, 1)) for N ≥ r.
(ii) NALs(Nd∗(w, 1); Z) is not dense in Ls(Nd∗(w, 1); Z) for N ≥ r.
(iii) NALs(Nd∗(w, 1); �r) is not dense in Ls(Nd∗(w, 1); �r) for every N ∈ N.

On the other hand, the Lindenstrauss theorem holds in the three cases above.

Proof. To prove (i), take the symmetric N -linear mapping Φ(x1, . . . , xN ) =
∑∞

i=1 x1(i) · · ·xN (i) and proceed 
as in [31, Theorem 2.6]. For (iii), consider Φ(x1, . . . , xN ) = (x1(i) · · ·xN (i))i and reason again as in [31, 
Theorem 2.6], but using [21, Lemma 4.2] instead of Lemma 2.2 there. Finally, (ii) follows from (i) and 
Proposition 3.4.

The last statement is a consequence of Theorem 3.1, since d∗(w, 1) has separable dual with the approxi-
mation property, �r is a dual space and Z has property (β). �
4. On quantitative versions of Bishop–Phelps and Lindenstrauss theorems for ideals of multilinear 
mappings

In [13] Bollobás proved a quantitative version of the Bishop–Phelps theorem, known nowadays as the 
Bishop–Phelps–Bollobás theorem. Roughly speaking, this result states that for any Banach space X, given 
a linear functional ϕ ∈ X ′ and x̃ ∈ BX such that ϕ(x̃) is close enough to ‖ϕ‖, it is possible to find a linear 
functional ψ ∈ X ′ close to ϕ attaining its norm at some a ∈ BX close to x̃. For linear operators, this problem 
was first considered by Acosta, Aron, García and Maestre in [3] where the following result is proved: the 
Bishop–Phelps–Bollobás theorem holds for L(�1; Y ) if and only if Y has the so-called approximate hyperplane 
series property. Also, the authors study a quantitative version of the Lindenstrauss theorem for operators, 
which will be referred to as a Lindenstrauss–Bollobás-type theorem. Unfortunately, even this question has 
in general a negative answer as [3, Example 6.3] shows. The study of these types of problems for multilinear 
mappings is initiated by Choi and Song [26]. In contrast to the positive result for L(�1; �∞) from [3], it is 
shown in [26] that there is no Bishop–Phelps–Bollobás theorem for bilinear forms on �1× �1. However, some 
positive results were obtained in the multilinear and polynomial contexts. For instance, when X1, . . . , XN

are uniformly convex, the Bishop–Phelps–Bollobás theorem holds in L(NX; Y ) for any Banach space Y

[6,32]. An analogous result was proved in [4] for the space of N -homogeneous polynomials.
Now we give the definition of the Bishop–Phelps–Bollobás and Lindenstrauss–Bollobás properties for 

ideals of multilinear mappings. We denote by SX and SX the unit spheres of a Banach space X and of the 
N -tuple X = X1 × · · · ×XN , where SX = SX1 × · · · ×SXN

is considered with the supremum norm. We also 
write X′ instead of X ′

1 × · · · ×X ′
N .

Let (U , ‖ · ‖U ) be a Banach ideal of N -linear mappings and X1, . . . , XN , Y be Banach spaces. We say that 
U(X; Y ) has the Bishop–Phelps–Bollobás property (BPBp) if the following is satisfied: given ε > 0 there 
exist β(ε) and η(ε) with limε→0+ β(ε) = 0 such that, if Φ ∈ U(X; Y ), ‖Φ‖ = 1 and x̃ = (x̃j)Nj=1 ∈ SX satisfy 
‖Φ(x̃)‖ > 1 − η(ε), then there exist Ψ ∈ U(X; Y ), ‖Ψ‖ = 1, and a = (aj)Nj=1 ∈ SX such that

∥∥Ψ(a)
∥∥ = 1, ‖a − x̃‖ < β(ε) and ‖Ψ − Φ‖U < ε.

It is worth mentioning that the definitions of this type appear for linear operators in [5,9] where the 
subclasses considered are (non-necessarily closed) subspaces of L under the supremum norm. Here, taking 
into account the results obtained in Section 1, our definition requires approximation of the multilinear 
mappings in ‖ · ‖U .

Following [3,21] we say that U(X; Y ) has the Lindenstrauss–Bollobás property (LBp) if, with ε, η and β
as above, given Φ ∈ U(X; Y ), ‖Φ‖ = 1 and x̃ = (x̃j)Nj=1 ∈ SX satisfying ‖Φ(x̃)‖ > 1 − η(ε), there exist 
Ψ ∈ U(X; Y ), ‖Ψ‖ = 1, and a′′ = (a′′j )Nj=1 ∈ SX′′ such that
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∥∥Ψ(a′′)∥∥ = 1,
∥∥a′′ − x̃

∥∥ < β(ε) and ‖Ψ − Φ‖U < ε.

In [21], provided that w ∈ �r for some 1 < r < ∞, it is shown that the LBp fails for L(Nd∗(w, 1)) if N ≥ r

and for L(Nd∗(w, 1); �r) for every N ∈ N. The given counterexamples are diagonal mappings, which do not 
necessary belong to any multilinear ideal; for instance, these mappings are not nuclear (nor approximable) 
since they are not weakly sequentially continuous. Our purpose now is to show counterexamples to the LBp
in every ideal U of multilinear mappings. The following results and the already mentioned counterexample 
to the BPBp for bilinear forms, will be the key for our objective. Recall that given a Banach space X, 
a linear projection P : X ′′ → X ′′ is an L-projection if

∥∥x′′∥∥ =
∥∥P (

x′′)∥∥ +
∥∥x′′ − P

(
x′′)∥∥ for all x′′ ∈ X ′′,

and X is an L-summand in its bidual if it is the range of an L-projection. Examples of spaces that are 
L-summands in their biduals are L1(μ)-spaces, preduals of von Neumann algebras and Lorentz sequence 
spaces d(w, 1).

Lemma 4.1. Let X, Y be Banach spaces such that X is an L-summand in its bidual with L-projection P . 
Let S: X ′′ → Y ′′ be a linear operator with ‖S‖ = 1, a′′ ∈ SX′′ and x̃ ∈ SX satisfying ‖S(a′′)‖ = 1 and 
‖a′′ − x̃‖ < β(ε) < 1 for some β(ε) 

ε→0
−−−→ 0. Then, for a = P (a′′)

‖P (a′′)‖ ∈ SX and some β′(ε) 
ε→0
−−−→ 0 we have

∥∥S(a)
∥∥ = 1 and ‖a− x̃‖ < β′(ε).

Proof. Since β(ε) > ‖a′′ − x̃‖ = ‖P (a′′) − x̃‖ + ‖(I −P )(a′′)‖, it follows that ‖P (a′′) − x̃‖ < β(ε) and hence 
‖P (a′′)‖ > 1 − β(ε) > 0. Then, we consider a = P (a′′)

‖P (a′′)‖ ∈ SX . Noting that

1 =
∥∥S(a′′)∥∥ =

∥∥S(P (
a′′

))
+ S

(
(I − P )

(
a′′

))∥∥ ≤
∥∥S(P (

a′′
))∥∥ +

∥∥S((I − P )
(
a′′

))∥∥
we obtain

∥∥S(P (
a′′

))∥∥ ≥ 1 −
∥∥S((I − P )

(
a′′

))∥∥ ≥ 1 −
∥∥(I − P )

(
a′′

)∥∥ =
∥∥P (

a′′
)∥∥

and consequently ‖S(a)‖ ≥ 1, which gives ‖S(a)‖ = 1. Now, recalling that ‖P (a′′) − x̃‖ < β(ε) and 
‖P (a′′)‖ > 1 − β(ε), we have

‖a− x̃‖ = 1
‖P (a′′)‖

∥∥P (
a′′

)
−
∥∥P (

a′′
)∥∥x̃∥∥

≤ 1
‖P (a′′)‖

(∥∥P (
a′′

)
− x̃

∥∥ +
∥∥x̃−

∥∥P (
a′′

)∥∥x̃∥∥)
<

1
1 − β(ε)

(
β(ε) + 1 −

∥∥P (
a′′

)∥∥)
<

2β(ε)
1 − β(ε) = β′(ε)

ε→0
−−−→ 0,

which gives the desired statement. �
Proposition 4.2. Let (U , ‖ · ‖U ) be a Banach ideal of N -linear mappings, Y be any Banach space and 
X1, . . . , XN be L-summands in their biduals. If U(X; Y ) has the LBp then it has the BPBp.
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Proof. Call P1, . . . , PN to the corresponding L-projections. Let ε, η(ε) and β(ε) be as in the definition of 
LBp, with ε sufficiently small such that β(ε) < 1. Take Φ ∈ U(X; Y ), ‖Φ‖ = 1 and x̃ = (x̃j)Nj=1 ∈ SX
such that ‖Φ(x̃)‖ > 1 − η(ε). By hypothesis, there exist Ψ ∈ U(X; Y ), ‖Ψ‖ = 1, and a′′ = (a′′j )Nj=1 ∈ SX′′

satisfying ∥∥Ψ(a′′)∥∥ = 1,
∥∥a′′ − x̃

∥∥ < β(ε) and ‖Ψ − Φ‖U < ε.

Consider S1 : X ′′
1 → Y ′′ defined by S1(x′′

1) = Ψ(x′′
1 , a

′′
2 , . . . , a

′′
N ). By the previous lemma∥∥∥∥S1

(
P1(a′′1)

‖P1(a′′1)‖

)∥∥∥∥ = 1 and
∥∥∥∥ P1(a′′1)
‖P1(a′′1)‖ − x̃1

∥∥∥∥ < β′(ε)

for some β′(ε) 
ε→0
−−−→ 0. Now taking S2 : X ′′

2 → Y ′′ defined by S2(x′′
2) = Ψ( P1(a′′

1 )
‖P1(a′′

1 )‖ , x
′′
2 , a

′′
3 , . . . , a

′′
N ) and 

reasoning again with the previous lemma, we obtain∥∥∥∥Ψ( P1(a′′1)
‖P1(a′′1)‖ ,

P2(a′′2)
‖P2(a′′2)‖ , a

′′
3 , . . . , a

′′
N

)∥∥∥∥ = 1 and
∥∥∥∥ Pi(a′′i )
‖Pi(a′′i )‖ − x̃i

∥∥∥∥ < β′(ε), i = 1, 2.

Inductively, if we write a = ( P1(a′′
1 )

‖P1(a′′
1 )‖ , . . . , 

PN (a′′
N )

‖PN (a′′
N )‖ ), we get

∥∥Ψ(a)
∥∥ = 1 and ‖a − x̃‖ < β′(ε)

ε→0
−−−→ 0,

which gives the desired statement. �
Since BPBp trivially implies LBp, the previous proposition gives the equivalence when the domain spaces 

are L-summands in their biduals. In view of this equivalence, in order to show that the LBp fails for multi-
linear mappings on �1×· · ·×�1, it suffices to see that the BPBp fails. We slightly modify the counterexample 
given in [26] for bilinear forms, to obtain finite type multilinear mappings that serve as counterexamples to 
the BPBp for any ideal. Take n ∈ N and define T : �1 × �1 → K by

T (x1, x2) =
2n2∑
i,j=1

x1(i)x2(j)(1 − δij) for δij the Kronecker delta.

Then ‖T‖ = 1. Let x̃ = (x̃1, ̃x2) ∈ S�1 ×S�1 where x̃1(i) = x̃2(i) = 1
2n2 for 1 ≤ i ≤ 2n2 and x̃1(i) = x̃2(i) = 0

otherwise and note that T (x̃) = 1 − 1
2n2 . Now, suppose that we can find a norm attaining operator S ∈

L(2�1 × �1) with ‖S‖ = 1 such that ‖T − S‖ < 1 and take any a = (a1, a2) ∈ S�1 × S�1 with |S(a)| = 1. 
Following the calculations in the proof of [26, Theorem 2], we see that ‖T − S‖ < 1 implies ‖a − x̃‖ ≥ 1

2 . 
Since T is a finite type bilinear form, this shows that the BPBp fails for any ideal of bilinear forms. Finally, 
for any Banach space Y and any y0 ∈ Y with ‖y0‖ = 1, we can define the finite type N -linear mapping 
Φ : �1 × · · · × �1 → Y by Φ(x1, . . . , xN ) = T (x1, x2)e′3(x3) · · · e′N (xN )y0, where T is defined as above and 
(e′i)i∈N is the dual basic sequence of the canonical vectors. This gives the desired counterexample to the 
BPBp, and hence to the LBp, for any ideal of N -linear mappings. To summarize, we have proved the 
following.

Proposition 4.3. Let (U , ‖ · ‖U ) be a Banach ideal of N -linear mappings with N ≥ 2 and Y any Banach 
space. Then the LBp fails for U(�1 × · · · × �1; Y ).

Now, we give a positive Bishop–Phelps–Bollobás-type result for ideals of multilinear mappings. In [32, 
Theorem 3.1] the authors prove that if X is uniformly convex then L(X; Y ) has the BPBp for any Banach 
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space Y . Analogous results were proved in [6, Theorem 2.2] for multilinear mappings and in [4, Theorem 3.1]
for homogeneous polynomials. We adapt the ideas in [4,32] to show that a weak version of the BPBp holds 
for every ideal of multilinear mappings whenever the domain spaces are uniformly convex. We briefly sketch 
the proof, focusing on the ideal part. Recall that a Banach space X is said to be uniformly convex if given 
ε > 0 there exists 0 < δ < 1 such that

if x1, x2 ∈ BX satisfy ‖x1 + x2‖
2 > 1 − δ, then ‖x1 − x2‖ < ε.

In that case, the modulus of convexity of X is given by

δX(ε) := inf
{

1 − ‖x1 + x2‖
2 : x1, x2 ∈ BX , ‖x1 − x2‖ > ε

}
.

Let (U , ‖ · ‖U ) be a Banach ideal of N -linear mappings. We say that U(X; Y ) has the weak BPBp if for 
each Φ ∈ U(X; Y ), ‖Φ‖ = 1, and ε > 0, there exist β̃(ε, ‖Φ‖U ) and η̃(ε, ‖Φ‖U ) depending also on ‖Φ‖U
satisfying the inequalities in the definition of the BPBp. Note that if U is a closed multilinear ideal (i.e., 
‖ · ‖U = ‖ · ‖) the weak BPBp is just the BPBp.

Theorem 4.4. Let (U , ‖ · ‖U ) be a Banach ideal of N -linear mappings, X1, . . . , XN be uniformly convex 
Banach spaces and X = X1 × · · · ×XN . Then U(X; Y ) has the weak BPBp for every Banach space Y .

Proof. Let Φ ∈ U(X; Y ), ‖Φ‖ = 1 and 0 < ε < 1. Consider δ(ε) = min{δX1(ε), . . . , δXN
(ε)} and η(ε) =

ε
24 δ( ε2 ). Let x̃ ∈ SX such that ∥∥Φ(x̃)

∥∥ > 1 − η(ε).

In order to show the result, we define inductively a sequence ((ak, x′
k, y

′
k, Φk))k such that Φk ∈ U(X; Y )

with ‖Φk‖ = 1 and (ak, x′
k, y

′
k) ∈ SX × SX′ × SY ′ satisfying appropriate estimates.

Let Φ1 := Φ, a1 = x̃ = (a1,j)Nj=1 and choose x′
1 = (x′

1,j)Nj=1 ∈ SX′ and y′1 ∈ SY ′ satisfying

x′
1,j(a1,j) = 1 for all j = 1, . . . , N and

∣∣y′1(Φ1(a1)
)∣∣ > 1 − η(ε).

Suppose that (ak, x′
k, y

′
k, Φk) was defined and satisfies

x′
k,j(ak,j) = 1 for all j = 1, . . . , N and

∣∣y′k(Φk(ak)
)∣∣ > 1 − η

(
ε

2k−1

)
.

Consider the auxiliary multilinear function

Ψk+1(x) := Φk(x) + ε

2k+2x
′
k,1(x1) · · ·x′

k,N (xN )Φk(ak)
(
x = (xj)Nj=1 ∈ X

)
which satisfies 1 < ‖Ψk+1‖ ≤ 1 + ε

2k+2 . Also, Ψk+1 ∈ U(X; Y ) since both Φk(·) and x′
k,1(·) · · ·x′

k,N (·)Φk(ak)
belong to U(X; Y ).

Now, define Φk+1 := Ψk+1
‖Ψk+1‖ and choose ak+1 ∈ SX and y′k+1 ∈ SY ′ such that

∣∣y′k+1
(
Ψk+1(ak+1)

)∣∣ > ‖Ψk+1‖ − η

(
ε

2k

)
.

Up to multiplying the coordinates of ak+1 by modulus 1 complex numbers, we may assume that 
x′
k,j(ak+1,j) = |x′

k,j(ak+1,j)|. Finally, choose x′
k+1 such that x′

k+1,j(ak+1,j) = 1 for all j = 1, . . . , N , com-
pleting the (k + 1)-element of the sequence ((ak, x′

k, y
′
k, Φk))k.
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Let us see that (Φk)k is a Cauchy sequence in U(X; Y ). First observe that ‖Ψk+1‖U ≤ ‖Φ‖U + 1 since 
‖Ψk+1‖U ≤ ‖Φk‖U + ε

2k+2 and

‖Φk‖U = ‖Ψk‖U
‖Ψk‖

≤
‖Φk−1‖U + ε

2k+1

‖Ψk‖
≤ ‖Φk−1‖U + ε

2k+1 .

On the one hand, we have

‖Φk+1 − Ψk+1‖U =
∣∣1 − ‖Ψk+1‖

∣∣‖Ψk+1‖U
‖Ψk+1‖

≤
∣∣1 − ‖Ψk+1‖

∣∣‖Ψk+1‖U

≤ ε

2k+2

(
‖Φ‖U + 1

)
. (9)

On the other hand,

‖Ψk+1 − Φk‖U =
∥∥∥∥ ε

2k+2x
′
k,1(·) · · ·x′

k,N (·)Φk(ak)
∥∥∥∥
U
≤ ε

2k+2 ≤ ε

2k+2

(
‖Φ‖U + 1

)
. (10)

Combining (9) and (10) we obtain

‖Φk+1 − Φk‖U ≤ ‖Φk+1 − Ψk+1‖U + ‖Ψk+1 − Φk‖U ≤ ε

2k+1

(
‖Φ‖U + 1

)
.

Hence, (Φk)k is a Cauchy sequence in U(X; Y ) which converges to some Φ∞ ∈ U(X; Y ) and satisfies 
‖Φ∞‖ = 1 and ‖Φ∞ − Φ‖ < ε(‖Φ‖U + 1).

As a consequence of the uniform convexity of each Xj, j = 1, . . . , N , the sequence (ak,j)k is a Cauchy 
sequence in SXj

and converges to some element a∞,j ∈ SXj
such that ‖a∞,j − x1,j‖ < ε. Now taking 

a∞ = (a∞,j)Nj=1 ∈ SX we have ‖a∞ − x̃‖ < ε. Also, since both sequences (Φk)k and (ak,j)k are convergent 
and limk ‖Φk(ak)‖ = 1, we see that Φ∞ is norm attaining, indeed ‖Φ∞(a∞)‖ = 1. Then, U(X; Y ) has the 
weak BPBp with η̃(ε, ‖Φ‖U ) = η(ε/(1 + ‖Φ‖U )) and β̃(ε, ‖Φ‖U ) = ε/(1 + ‖Φ‖U ). �

We remark that, with a completely analogous proof, the theorem remains valid for any ideal of homoge-
neous polynomials.

Final remark. Related to Proposition 3.4, in [4, Proposition 3.3] it is shown that if L(NX) has the BPBp
then L(NX; Z) has the BPBp for every Z with property (β). Mimicking the proof of this result, taking care 
of ideal part as we did in Theorem 4.4, it can be seen that the corresponding weak statement still holds for 
any Banach ideal (U , ‖ · ‖U ) of N -linear mappings. Also, looking at the proof of Proposition 3.4, it follows 
that if U(X; Z) has the weak BPBp for some Z with property (β), then U(X) has the weak BPBp. Hence, 
we have the following.

Proposition 4.5. Let (U , ‖ · ‖U ) be a Banach ideal of N -linear mappings. Then, U(X) has the weak BPBp if 
and only if U(X; Z) has the weak BPBp for every (or some) Banach space Z with property (β).
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