41,809 research outputs found

    Double distributions: Loose ends

    Full text link
    We point out that double distributions need not vanish at their boundary. Boundary terms do not change the ambiguity inherent in defining double distributions; instead, boundary conditions must be satisfied in order to switch between different decompositions. We analyze both the spin zero and spin one-half cases.Comment: 4 pages, 0 figures, RevTex 4, Brief Repor

    Factorization in hard diffraction

    Get PDF
    In this talk, I reviewed the role of factorization in diffraction hard scattering.Comment: Talk presented at the Ringberg Workshop on ``New Trends in HERA Physics 2001''. 10 pages, 6 postscript figures. Misprints correcte

    JPEG2000 Image Compression on Solar EUV Images

    Get PDF
    For future solar missions as well as ground-based telescopes, efficient ways to return and process data have become increasingly important. Solar Orbiter, e.g., which is the next ESA/NASA mission to explore the Sun and the heliosphere, is a deep-space mission, which implies a limited telemetry rate that makes efficient onboard data compression a necessity to achieve the mission science goals. Missions like the Solar Dynamics Observatory (SDO) and future ground-based telescopes such as the Daniel K. Inouye Solar Telescope, on the other hand, face the challenge of making petabyte-sized solar data archives accessible to the solar community. New image compression standards address these challenges by implementing efficient and flexible compression algorithms that can be tailored to user requirements. We analyse solar images from the Atmospheric Imaging Assembly (AIA) instrument onboard SDO to study the effect of lossy JPEG2000 (from the Joint Photographic Experts Group 2000) image compression at different bit rates. To assess the quality of compressed images, we use the mean structural similarity (MSSIM) index as well as the widely used peak signal-to-noise ratio (PSNR) as metrics and compare the two in the context of solar EUV images. In addition, we perform tests to validate the scientific use of the lossily compressed images by analysing examples of an on-disk and off-limb coronal-loop oscillation time-series observed by AIA/SDO.Comment: 25 pages, published in Solar Physic

    Electron-magnon scattering in elementary ferromagnets from first principles: lifetime broadening and band anomalies

    Full text link
    We study the electron-magnon scattering in bulk Fe, Co, and Ni within the framework of many-body perturbation theory implemented in the full-potential linearized augmented-plane-wave method. To this end, a k\mathbf{k}-dependent self-energy (GTGT self-energy) describing the scattering of electrons and magnons is constructed from the solution of a Bethe-Salpeter equation for the two-particle (electron-hole) Green function, in which single-particle Stoner and collective spin-wave excitations (magnons) are treated on the same footing. Partial self-consistency is achieved by the alignment of the chemical potentials. The resulting renormalized electronic band structures exhibit strong spin-dependent lifetime effects close to the Fermi energy, which are strongest in Fe. The renormalization can give rise to a loss of quasiparticle character close to the Fermi energy, which we attribute to electron scattering with spatially extended spin waves. This scattering is also responsible for dispersion anomalies in conduction bands of iron and for the formation of satellite bands in nickel. Furthermore, we find a band anomaly at a binding energy of 1.5~eV in iron, which results from a coupling of the quasihole with single-particle excitations that form a peak in the Stoner continuum. This band anomaly was recently observed in photoemission experiments. On the theory side, we show that the contribution of the Goldstone mode to the GTGT self-energy is expected to (nearly) vanish in the long-wavelength limit. We also present an in-depth discussion about the possible violation of causality when an incomplete subset of self-energy diagrams is chosen

    Polarization operator approach to electron-positron pair production in combined laser and Coulomb fields

    Get PDF
    The optical theorem is applied to the process of electron-positron pair creation in the superposition of a nuclear Coulomb and a strong laser field. We derive new representations for the total production rate as two-fold integrals, both for circular laser polarization and for the general case of elliptic polarization, which has not been treated before. Our approach allows us to obtain by analytical means the asymptotic behaviour of the pair creation rate for various limits of interest. In particular, we consider pair production by two-photon absorption and show that, close to the energetic threshold of this process, the rate obeys a power law in the laser frequency with different exponents for linear and circular laser polarization. With the help of the upcoming x-ray laser sources our results could be tested experimentally.Comment: 10 pages, 3 figure

    Mesoscopic scattering of spin s particles

    Full text link
    Quantum effects in weakly disordered systems are governed by the properties of the elementary interaction between propagating particles and impurities. Long range mesoscopic effects due to multiple scattering are derived by iterating the single scattering vertex, which has to be appropriately diagonalized. In the present contribution, we present a systematic and detailed diagonalisation of the diffuson and cooperon vertices responsible for weak localisation effects. We obtain general expressions for eigenvalues and projectors onto eigenmodes, for any spin and arbitrary elementary interaction with impurities. This description provides a common frame for a unified theory of mesoscopic spin physics for electrons, photons, and other quantum particles. We treat in detail the case of spin-flip scattering of electrons by freely orientable magnetic impurities and briefly review the case of photon scattering from degenerate dipole transitions in cold atomic gases.Comment: published version, with a new figure and new section

    Expression of PIK3CA mutant E545K in the mammary gland induces heterogeneous tumors but is less potent than mutant H1047R.

    Get PDF
    The phosphoinositide 3-kinase (PI3K) signaling cascade is a key mediator of cellular growth, survival and metabolism and is frequently subverted in human cancer. The gene encoding for the alpha catalytic subunit of PI3K (PIK3CA) is mutated and/or amplified in ∼30% of breast cancers. Mutations in either the kinase domain (H1047R) or the helical domain (E545K) are most common and result in a constitutively active enzyme with oncogenic capacity. PIK3CA(H1047R) was previously demonstrated to induce tumors in transgenic mouse models; however, it was not known whether overexpression of PIK3CA(E545K) is sufficient to induce mammary tumors and whether tumor initiation by these two types of mutants differs. Here, we demonstrate that expression of PIK3CA(E545K) in the mouse mammary gland induces heterogenous mammary carcinomas but with a longer latency than PIK3CA(H1047R)-expressing mice. Our results suggest that the helical domain mutant PIK3CA(E545K) is a less potent inducer of mammary tumors due to less efficient activation of downstream Akt signaling

    What can we learn from Dijet suppression at RHIC?

    Full text link
    We present a systematic study of the dijet suppression at RHIC using the VNI/BMS parton cascade. We examine the modification of the dijet asymmetry A_j and the within-cone transverse energy distribution (jet-shape) along with partonic fragmentation distributions z and j_t in terms of: qhat; the path length of leading and sub-leading jets; cuts on the jet energy distributions; jet cone angle and the jet-medium interaction mechanism. We find that A_j is most sensitive to qhat and relatively insensitive to the nature of the jet-medium interaction mechanism. The jet profile is dominated by qhat and the nature of the interaction mechanism. The partonic fragmentation distributions clearly show the jet modification and differentiate between elastic and radiative+elastic modes

    Future dynamics in f(R) theories

    Full text link
    The f(R)f(R) gravity theories provide an alternative way to explain the current cosmic acceleration without invoking dark energy matter component. However, the freedom in the choice of the functional forms of f(R)f(R) gives rise to the problem of how to constrain and break the degeneracy among these gravity theories on theoretical and/or observational grounds. In this paper to proceed further with the investigation on the potentialities, difficulties and limitations of f(R)f(R) gravity, we examine the question as to whether the future dynamics can be used to break the degeneracy between f(R)f(R) gravity theories by investigating the future dynamics of spatially homogeneous and isotropic dust flat models in two f(R)f(R) gravity theories, namely the well known f(R)=R+αRnf(R) = R + \alpha R^{n} gravity and another by A. Aviles et al., whose motivation comes from the cosmographic approach to f(R)f(R) gravity. To this end we perform a detailed numerical study of the future dynamic of these flat model in these theories taking into account the recent constraints on the cosmological parameters made by the Planck team. We show that besides being powerful for discriminating between f(R)f(R) gravity theories, the future dynamics technique can also be used to determine the fate of the Universe in the framework of these f(R)f(R) gravity theories. Moreover, there emerges from our numerical analysis that if we do not invoke a dark energy component with equation-of-state parameter ω<−1\omega < -1 one still has dust flat FLRW solution with a big rip, if gravity deviates from general relativity via f(R)=R+αRnf(R) = R + \alpha R^n . We also show that FLRW dust solutions with f′′<0f''<0 do not necessarily lead to singularity.Comment: 12 pages, 8 figures. V2: Generality and implications of the results are emphasized, connection with the recent literature improved, typos corrected, references adde
    • …
    corecore