Quantum effects in weakly disordered systems are governed by the properties
of the elementary interaction between propagating particles and impurities.
Long range mesoscopic effects due to multiple scattering are derived by
iterating the single scattering vertex, which has to be appropriately
diagonalized. In the present contribution, we present a systematic and detailed
diagonalisation of the diffuson and cooperon vertices responsible for weak
localisation effects. We obtain general expressions for eigenvalues and
projectors onto eigenmodes, for any spin and arbitrary elementary interaction
with impurities. This description provides a common frame for a unified theory
of mesoscopic spin physics for electrons, photons, and other quantum particles.
We treat in detail the case of spin-flip scattering of electrons by freely
orientable magnetic impurities and briefly review the case of photon scattering
from degenerate dipole transitions in cold atomic gases.Comment: published version, with a new figure and new section