119 research outputs found

    A Methodology for the Diagnostic of Aircraft Engine Based on Indicators Aggregation

    Full text link
    Aircraft engine manufacturers collect large amount of engine related data during flights. These data are used to detect anomalies in the engines in order to help companies optimize their maintenance costs. This article introduces and studies a generic methodology that allows one to build automatic early signs of anomaly detection in a way that is understandable by human operators who make the final maintenance decision. The main idea of the method is to generate a very large number of binary indicators based on parametric anomaly scores designed by experts, complemented by simple aggregations of those scores. The best indicators are selected via a classical forward scheme, leading to a much reduced number of indicators that are tuned to a data set. We illustrate the interest of the method on simulated data which contain realistic early signs of anomalies.Comment: Proceedings of the 14th Industrial Conference, ICDM 2014, St. Petersburg : Russian Federation (2014

    Panel-based Assessment of Ecosystem Condition of the North Sea Shelf Ecosystem

    Get PDF
    The System for Assessment of Ecological Condition, coordinated by the Norwegian Environment Agency, is intended to form the foundation for evidence-based assessments of the ecological condition of Norwegian terrestrial and marine ecosystems not covered by the EU Water Framework Directive. The reference condition is defined as “intact ecosystems”, i.e., a condition that is largely unimpacted by modern industrial anthropogenic activities. An ecosystem in good ecological condition does not deviate substantially from this reference condition in structure, functions or productivity. This report describes the first operational assessment of the ecological condition of the marine shelf ecosystem in the Norwegian sector of the North Sea and Skagerrak. The assessment method employed is the Panel-based Assessment of Ecosystem Condition (PAEC1) and the current assessment has considered to what extent the North Sea and Skagerrak shelf ecosystem deviates from the reference condition2 by evaluating change trajectories.Panel-based Assessment of Ecosystem Condition of the North Sea Shelf EcosystempublishedVersio

    Characterization of the SNAG and SLUG Domains of Snail2 in the Repression of E-Cadherin and EMT Induction: Modulation by Serine 4 Phosphorylation

    Get PDF
    Snail1 and Snail2, two highly related members of the Snail superfamily, are direct transcriptional repressors of E-cadherin and EMT inducers. Previous comparative gene profiling analyses have revealed important differences in the gene expression pattern regulated by Snail1 and Snail2, indicating functional differences between both factors. The molecular mechanism of Snail1-mediated repression has been elucidated to some extent, but very little is presently known on the repression mediated by Snail2. In the present work, we report on the characterization of Snail2 repression of E-cadherin and its regulation by phosphorylation. Both the N-terminal SNAG and the central SLUG domains of Snail2 are required for efficient repression of the E-cadherin promoter. The co-repressor NCoR interacts with Snail2 through the SNAG domain, while CtBP1 is recruited through the SLUG domain. Interestingly, the SNAG domain is absolutely required for EMT induction while the SLUG domain plays a negative modulation of Snail2 mediated EMT. Additionally, we identify here novel in vivo phosphorylation sites at serine 4 and serine 88 of Snail2 and demonstrate the functional implication of serine 4 in the regulation of Snail2-mediated repressor activity of E-cadherin and in Snail2 induction of EMT

    The Effects of Ash and Black Carbon (Biochar) on Germination of Different Tree Species

    Get PDF
    Forest fires generate large amounts of ash and biochar, or black carbon (BC), that cover the soil surface, interacting with the soil’s constituents and its seedbank. This study concerns reproductive ecology assessments supported by molecular characterisation to improve our understanding of the effects of fire and fire residues on the germination behaviour of 12 arboreal species with a wide geographic distribution. For this purpose, we analysed the effects of three ash and one BC concentration on the germination of Acacia dealbata Link, A. longifolia (Andrews) Willd., A. mearnsii De Wild., A. melanoxylon R. Br., Pinus nigra Arnold, P. pinaster Aiton, P. radiata D. Don, P. sylvestris L., Quercus ilex L., Q. pyrenaica Willd., Q. robur L., and Q. rubra L. Each tree species was exposed to ash and BC created from its foliage or twigs (except for Q. rubra, which was exposed to ash and BC of Ulex europaeus L.). We monitored germination percentage, the T50 parameter, and tracked the development of germination over time (up to 1 yr). The BC of A. dealbata, P. pinaster, and Q. robur was analysed by pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) to assess the molecular composition. In six species, ash inhibited the germination, while in another five species, germination was not affected by ash or by BC. In Q. rubra, ash and BC stimulated its germination. This stimulating effect of the BC on Q. rubra is likely to be related to the chemical composition of the ash and BC obtained from Ulex feedstock. The BC of U. europaeus has a very different molecular composition than the other BC samples analysed, which, together with other factors, probably allowed for its germination stimulating effects.This study was carried out within the Project 10MDS200007PR, financed by the Xunta de Galicia; the Project AGL2013-48189-C2-2-R, financed by the Ministerio de Economía y Competitividad, Spain; and FEDERS

    Second generation tyrosine kinase inhibitors prevent disease progression in high-risk (high CIP2A) chronic myeloid leukaemia patients.

    Get PDF
    High cancerous inhibitor of PP2A (CIP2A) protein levels at diagnosis of chronic myeloid leukaemia (CML) are predictive of disease progression in imatinib-treated patients. It is not known whether this is true in patients treated with second generation tyrosine kinase inhibitors (2G TKI) from diagnosis, and whether 2G TKIs modulate the CIP2A pathway. Here, we show that patients with high diagnostic CIP2A levels who receive a 2G TKI do not progress, unlike those treated with imatinib (P=<0.0001). 2G TKIs induce more potent suppression of CIP2A and c-Myc than imatinib. The transcription factor E2F1 is elevated in high CIP2A patients and following 1 month of in vivo treatment 2G TKIs suppress E2F1 and reduce CIP2A; these effects are not seen with imatinib. Silencing of CIP2A, c-Myc or E2F1 in K562 cells or CML CD34+ cells reactivates PP2A leading to BCR-ABL suppression. CIP2A increases proliferation and this is only reduced by 2G TKIs. Patients with high CIP2A levels should be offered 2G TKI treatment in preference to imatinib. 2G TKIs disrupt the CIP2A/c-Myc/E2F1 positive feedback loop, leading to lower disease progression risk. The data supports the view that CIP2A inhibits PP2Ac, stabilising E2F1, creating a CIP2A/c-Myc/E2F1 positive feedback loop, which imatinib cannot overcome

    Metabolic control of embryonic dormancy in apple seed: seven decades of research

    Full text link
    corecore