44 research outputs found

    Hollow carbon spheres in microwaves: Bio inspired absorbing coating

    Get PDF
    This is the final version of the article. Available from American Institute of Physics (AIP)] via the DOI in this record.The electromagnetic response of a heterostructure based on a monolayer of hollow glassy carbon spheres packed in 2D was experimentally surveyed with respect to its response to microwaves, namely, the Ka-band (26-37 GHz) frequency range. Such an ordered monolayer of spheres mimics the well-known "moth-eye"-like coating structures, which are widely used for designing anti-reflective surfaces, and was modelled with the long-wave approximation. Based on the experimental and modelling results, we demonstrate that carbon hollow spheres may be used for building an extremely lightweight, almost perfectly absorbing, coating for Ka-band applications.This work was supported in part by FP7-PEOPLE-2013- IRSES-610875 NAmiceMC, FP7 Twinning Grant Inconet EaP_004

    Fully carbon metasurface: Absorbing coating in microwaves

    Get PDF
    This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this record.The microwave-absorbing properties of a heterostructure consisting of an ordered monolayer of porous glassy carbon spheres were experimentally and theoretically investigated in the Ka-band (26–37 GHz) frequency range. The electromagnetic response of such a “moth-eye”-like all-carbon metasurface at a normal incidence angle was modelled on the basis of long-wave approximation. Modelling parameters in the Ka-band were used to estimate and predict the absorption properties of monolayers in free space in the range 1–40 GHz. Experimental and theoretical results demonstrate that a metasurface based on porous glassy carbon spheres is an inert, lightweight, compact, and perfectly absorbing material for designing new effective microwave absorbers in various practically used frequency ranges.The work was supported by Projects FP7-610875 (NAMICEMC, 2013-2017), H2020 RISE 734164 Graphene 3D, and FP7 IRSES project CANTOR (Grant No. FP7-612285). Sijin Li thanks the China Scholarship Council for the financial support under Grant No. 201406510029. Cameron Gallagher and Emma Burgess acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1)

    A study of random resistor-capacitor-diode networks to assess the electromagnetic properties of carbon nanotube filled polymers

    Full text link
    We determined the frequency dependent effective permittivity of a large ternary network of randomly positioned resistors, capacitors, and diodes. A linear circuit analysis of such systems is shown to match the experimental dielectric response of single-walled carbon nanotube (SWCNT) filled polymers. This modeling method is able to reproduce the two most important features of SWCNT filled composites, i.e. the low frequency dispersion and dipolar relaxation. As a result of the modeling important physical conclusion proved by the experimental data was done: the low frequency behavior of SWCNT-filled polymer composites is mostly caused by the fraction of semiconducting SWCNTs

    Exploring carbon nanotubes / BaTiO3 / Fe3O4 Nanocomposites as microwave absorbers

    Get PDF
    This is the final version of the article. Available from EM Academy via the link in this record.Open access journalWe report the modelling and characterization of microwave absorbing materials specially designed for 26–37 GHz frequency range (Ka-band). Composite materials based on carbon nanotubes/BaTiO3/Fe3O4 in a phosphate ceramic matrix were produced, and their electromagnetic response was investigated. Both theoretical and experimental results demonstrate that this material can absorb up to 100% of the power of an incident plane wave at a normal incidence angle. The physics underlying such absorption level is discussed in terms of refractive index of the material.This work was supported in part by FP7-PEOPLE-2013-IRSES-610875 NAmiceMC, FP7 Twinning Grant Inconet EaP 004. P. Kuzhir is thankful for support by Tomsk State University Competitiveness Improvement Program. Lab-STICC is UMR CNRS 6285

    Cluster analysis and classification of process data by use of principal curves

    Get PDF
    Thesis (M.Ing.) -- University of Stellenbosch, 1999.ENGLISH SUMMARY: In this thesis a new method of clustering as wen as a new method of classification is proposed. Cluster analysis is a statistical method used to search for natural groups in an unstructured multivariate data set. Clusters are obtained in such. a way that the observations belonging to the same group are more alike than observations across groups. For instance, long data records are found in mineral processing plants, where the data can be reduced to clusters according to different ore types. Most of the existing clustering methods do not give reliable results when applied to engineering data, since these methods were mainly developed in the domains of psychology and biology. Classification analysis can be regarded as the natural continuation of cluster analysis. In order to classify objects, two types of observations are needed. The first are those observations whose group memberships are known a priori, which can be acquired through cluster analysis. The second kind of observations are those whose group memberships are unidentified. By means of classification these observations are allocated to one of the existing groups. Both of the proposed techniques are based on the use of a smooth one-dimensional curve, passing through the middle of the data set. To formalise such an idea, principal curves were developed by Hastie and Stuetzle (1989). A principal curve summarises the data in a non-linear fashion. For clustering, the principal curve of the entire unstructured data set is extracted. This one-dimensional representation of the data set is then used to search for different clusters. For classification, a principal curve is fitted to every known group in the data set. The observations to be assigned to one of the known groups are allocated to the group closest to the new point. Clustering with principal curves grouped engineering data better than most of the well-known clustering algorithms. Some shortcomings of this method were also established. Classification with principal curves gave similar, optimal results as compared to some existing classification methods. This classification method can be applied to data of any distribution, unlike statistical classification techniques.AFRIKAANSE OPSOMMING: In hierdie tesis word 'n nuwe metode elk vir trosanalise en klassifikasie analise voorgestel. Trosanalise is 'n statistiese tegniek waarrnee natuurlike groepe in 'n ongestruktureerde meerveranderlike datastel gevind word. Groepe word op so 'n wyse verkry dat die waamemings in dieselfde groep meer eenders is as waarnemings tussen groepe. Byvoorbeeld, in mineraalaanlegte is lang datarekords algemeen, wat deur middel van trosanalise gereduseer kan word na verskillende groepe, ooreenkomstig verskillende ertstipes. Die meerderheid bestaande groeperingsmetodes lewer nie betroubare resultate in hul toepassing op ingenieursdata nie, aangesien hierdie tegnieke meestal hul oorsprong in die sielkundige en biologiese velde het. Klassifikasie analise kan gesien word as die natuurlike opvolging van trosanalise. Om objekte te klassifiseer, word gebruik gemaak van twee soorte waarnemings. Die eerste tipe is daardie waamemings met a priori bekende groepsidentiteite, wat deur trosanalise gevind kan word. Die tweede soort is die waarnemings met onbekende groepsidentiteite. Elkeen van hierdie waarnemings kan deur middel van klassifikasie toegewys word aan een van die bestaande groepe. Beide hierdie voorgestelde tegnieke is gebaseer op die gebruik van 'n gladde, eendimensionele kromme wat deur die middel van die datastel beweeg. Om hierdie idee te formaliseer, is hoojkrommes ontwikkel deur Hastie en Stuetzle (1989). 'n Hoofkromme gee 'n nie-lineere opsomming van die data. Vir groeperingsdoeleindes word 'n hoofkromme uit die algehele ongestruktureerde datastel onttrek. Met klassifikasie word'n hootkurwe aan elke bekende groep in die datastel gepas. Die waameming wat aan een van die bestaande groepe toegewys moet word, word in die groep naaste aan die betrokke punt geplaas. Groepering met behulp van hoofkrommes, het met ingenieursdata beter resultate gelewer as meeste van die bestaande tegnieke. Deur middel van praktiese voorbeelde is sekere tekortkominge van hierdie groeperingsmetode vasgestel. Klassifikasie met behulp van hoofkrornmes lewer soortgelyke, optimale resultate as die van bekende vergelykende tegnieke. Die voorgestelde klassifikasie tegniek kan toegepas word op datastelle van enige verde ling, in teenstelling met die statistiese klassifikasietegnieke.Maste

    Microwave and mechanical properties of quartz/graphene-based polymer nanocomposites

    Get PDF
    We report microwave spectroscopy studies of graphene-based polymer-matrix composite materials subject to uniaxial elongation. The samples were prepared via shear mixing under the same thermal processing conditions of amorphous styrene butadiene rubber (SBR) with quartz grains on the order of micrometers in size and/or graphene sheets with thickness 10-20 nm and average lateral size 200 mu m. An important result is the observation of a significant increase (up to 25%) in the effective microwave permittivity of hybridized nanocomposites comprising both quartz and graphene compared to the nanocomposites with quartz only. We suggest that the coating of quartz grains by graphene sheets is the most likely origin of this synergetic effect. In all cases, we also observe that the permittivity spectrum is unaffected by strain up to 8%. By examining the mechanical response, it is shown that the elasticity network of SBR polymer chains is significantly affected in the rubbery state by filling SBR with graphene and quartz particles. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793411

    FDM print materials applied in the microwave range

    No full text
    В статье рассмотрены результаты исследований, которые позволяют рассматривать углеродные микроволокна в качестве дешевой альтернативы наноуглеродным наполнителям для различных применений. Это позволит увеличить значения мнимой части эффективной комплексной диэлектрической проницаемости и, следовательно, приведет к увеличению поглощения в рассматриваемых структурах из-за омических потерь

    Electromagnetic properties of filaments containing nanofillers for 3d printing

    No full text
    PLA filaments filled with different percentages of commercial graphene nanoplates (GNP) and multi-walled carbon nanotubes (CNT), produced for Fused Deposition Modeling (FDM) 3D-printing, are here considered. In particular, the electromagnetic properties of the filament obtained with two different processes are compared in order to assess the influence of the different procedures, named solution blending (SB) and melt extrusion (ME), on the Ka-band (26-37 GHz) behavior of the nanocomposites. First, the method of measurements of electromagnetic response of rod-shaped samples in the instrumentation waveguide is studied and implemented. Then, the electromagnetic properties of filaments loaded with nanocomposites in a maximum of 6wt% are investigated, assuming for each filler the possible value of {0,3,6} wt%. The experimental results in terms of reflection and absorption are used to estimate the complex permittivity and the AC electrical conductivity in samples under study by using a suitable created code. Filaments prepared by ME show higher values of both components of dielectric permittivity compared to SB. The highest values of relative permittivity are obtained for the bi-filler filament (3wt% GNP and 3wt% CNT) in ME processes (max value 12.73), whereas a maximum of 11.84 is reached for the relative permittivity of SB produced filament. Maximal AC conductivity is observed for composites containing 6wt% of GNP and 6wt% of CNT for SB and ME respectively. Electrical percolation thresholds (EPT) consistent with literature available DC results are detected, ranging in the explored filler amount, except for the SB produced CNT-based filament
    corecore