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SYNOPSIS 

In this thesis a new method of clustering as wen as a new method of classification is 

proposed. Cluster analysis is a statistical method used to search for natural groups in 

an unstructured multivariate data set. Clusters are obtained in such. a way that the 

observations belonging to the same group are more alike than observations across 

groups. For instance, long datarecords are found in mineral processing plants, where 

the data can be reduced to clusters according to different ore types. Most of the 

existing clustering methods do not give reliable results when applied to engineering 

data, since these methods were mainly developed in the domains of psychology and 

biology. 

Classification analysis can be regarded as the natural continuation of cluster analysis. 

In order to classifY objects, two types of obserVations are needed. The first are those 

observations whose group memberships are known a priori, which can be acquired 

through cluster analysis. The second kind of observations are those whose group 

memberships are unidentified. By means of classification these observations are 

allocated to one of the existing groups. 

Both of the proposed techniques are based on the use of a smooth one-dimensional 

curve, passing through the middle of the data set. To formalise such an idea, 

principal curves were developed by Hastie and Stuetzle (1989). A principal curve 

summarises the data in a non-linear fashion. For clustering, the principal curve of the 

entire unstructured data set is extracted. This one-dimensional representation of the 

data set is then used to search for different clusters. For classification, a principal 

curve is fitted to every known group in the data set. The observations to be assigned 

to one of the known groups are allocated to the group closest to the new point. 

Clustering with principal curves grouped engineering data better than most of the 

well-known clustering algorithms. Some shortcomings of this method were also 

established. Classification with principal curves gave similar, optimal results as 
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compared to some existing classification methods. This classification method can be 

applied to data of any distribution, unlike statistical classification techniques. 

111 

Stellenbosch University  https://scholar.sun.ac.za



OPSOMMING 

In hierdie tesis word 'n nuwe metode elk vir trosanalise en klassifikasie analise 

voorgestel. Trosanalise is 'n statistiese tegniek waarrnee natuurlike groepe in 'n 

ongestruktureerde meerveranderlike datastel gevind word. Groepe word op so 'n 

wyse verkry dat die waamemings in dieselfde groep meer eenders is as waarnemings 

tussen groepe. Byvoorbeeld, in mineraalaanlegte is lang datarekords algemeen, wat 

deur middel van trosanalise gereduseer kan word na verskillende groepe, 

ooreenkomstig verskillende ertstipes. Die meerderheid bestaande groeperingsmetodes 

lewer nie betroubare resultate in hul toepassing op ingenieursdata nie, aangesien 

hierdie tegnieke meestal hul oorsprong in die sielkundige en biologiese velde het. 

Klassifikasie analise kan gesien word as die natuurlike opvolging van trosanalise. 

Om objekte te klassifiseer, word gebruik gemaak van twee soorte waarnemings. Die 

eerste tipe is daardie waamemings met a priori bekende groepsidentiteite, wat deur 

trosanalise gevind kan word. Die tweede soort is die waarnemings met onbekende 

groepsidentiteite. Elkeen van hierdie waarnemings kan deur middel van klassifikasie 

toegewys word aan een van die bestaande groepe. 

Beide hierdie voorgestelde tegnieke is gebaseer op die gebruik van 'n gladde, een­

dimensionele kromme wat deur die middel van die datastel beweeg. Om hierdie idee 

te formaliseer, is hoojkrommes ontwikkel deur Hastie en Stuetzle (1989). 'n 

Hoofkromme~ gee 'n nie-lineere opsomming van die data. Vir groeperingsdoeleindes 

word 'n hoofkromme uit die algehele ongestruktureerde datastel onttrek. Met 

klassifikasie word'n hootkurwe aan elke bekende groep in die datastel gepas. Die 

waameming wat aan een van die bestaande groepe toegewys moet word, word in die 

groep naaste aan die betrokke punt geplaas. 

Groepering met behulp van hoofkrommes, het met ingenieursdata beter resultate 

gelewer as meeste van die bestaande tegnieke. Deur middel van praktiese voorbeelde 

is sekere tekortkominge van hierdie groeperingsmetode vasgestel. Klassifikasie met 
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behulp van hoofkrornmes lewer soortgelyke, optimale resultate as die van bekende 

vergelykende tegnieke. Die voorgestelde klassifikasie tegniek kan toegepas word op 

datastelle van enige verde ling, in teenstelling met die statistiese klassifikasietegnieke. 
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CHAPTER! 

INTRODUCTION 

Cluster analysis is a grouping technique that can be applied in many different fields. 

This method fuses observations, which are similar in some sense, into the same group. 

Observations that do not have mutual characteristics are said to be dissimilar. Such 

observations belong to different groups or clusters. For instance, in order to 

maximise profits and to minimise the costs on chemical and metallurgical plants, the 

functional settings need to be adjusted regularly. For example, in the petrochemical 

industry blending operations necessitate frequent modification to avoid changes in 

crude oil feedstock (Aldrich, 1999). The physicochemical phenomena underlying the 

behaviour of the plant, needs to be understood thoroughly in order to make these 

adjustments. Unfortunately, this is not the case; therefore, engineers often have to 

rely on historic plant data analyses to anticipate the behaviour of the plant regarding 

changing conditions. Historic plant data show a tendency to cluster around major 

process changes, for instance the shutdown or start-up of manufacturing units, 

malfunctioning equipment or the introduction of new reagents, etc. Thus, cluster 

analysis can produce valuable information concerning process conditions. 

Classification analysis is a statistical method that can be seen as the natural 

succession of cluster analysis. In the latter method, different clusters are identified. 

Classification analysis makes use of these clusters where new observations, whose 

group memberships are not known, are compared to the different groups. The 

observation is allocated to that group with which the new observation has the most 

features in common. 

The majority of the existing clustering techniques was developed to cluster qualitative 

data, as found in fields such as sociology and psychology. Therefore, the application 

of these methods to engineering data, which are quantitative, leads to incorrect and 
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senseless results. A clustering technique is proposed in an attempt to find a grouping 

method, which yields more reasonable clustering results of engineering data. This 

clustering method is based on the internal structure of the multidimensional data set. 

The internal structure of the data is obtained through a technique called principal 

curves (Hastie and Stuetzle, 1989). The similar concept is applied to classification 

analysis, where the internal structure of each of the identified groups is obtained. 

New observations are compared to every group's structure in order to assign each new 

point to exactly one of the known groups. 
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'CHAPTER2 

BACKGROUND 

Cluster analysis and classification analysis are two broad categories of the 

same subject, namely that of classification. However, they relate to different 

aspects. The former technique relates to situations where no prior knowledge 

concerning the structure of the multivariate data set is available. A good 

exploratory procedure is to search the structure of the data for 'natural' groups 

(Johnson and Wichern, 1988). This technique needs no assumptions regarding 

the number of groups or the group structure present within the data set. These 

groupings are determined in such a way that the units within the same group are 

more alike or homogeneous than objects helonging to other groups. These 

groups are called clusters. The number and features of the clusters are totally 

data-dependent. This form of classification problem is known as unsupervised 

learning or in statistical terms it is labelled as cluster analysis. 

The second technique, classification analysis, applies in situations where the 

available data set consists of k distinct identifiable classes or groups, thus it is 

known to which groups the observations belong. Furthermore there are those 

objects with unidentified group membership,. in Jerms of these known groups. 

The goal is to obtain a rule by which to assign these additional, new 

observations to one of the k prespecified groups. This second event is known as 

supervised learning or, as already mentioned, as classification analysis in 

statistical terminology. . 

Figure 2.1 and 2.2 illustrates the difference between cluster analysis and 

classification analysis, respectively. 
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Figure 2.1: Cluster analysis seeks distinct groups present in the data . 
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Figure 2.2: In classification analysis the distinct groups are known 

beforehand and 'new' points are assigned to one of the existing clusters. 
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2.1 Cluster Analysis 

Cluster analysis is a statistical technique used to search for 'natural' groups in 

an unstructured set of multidimensional data. This is an important tool for 

exploratory data analysis and is often used in conjunction with other analyses. 

Objects that belong to the same group are known to be similar in some sense, 

whereas the opposite holds for objects that belong to different groups, which are 

said to be dissimilar. Clustering can either be carried out on the variables or the 

observations. Cluster analysis originated in the fields of biology and zoology 

where it was known under the name of taxonomy, however, it was not a very 

scientific method (Everitt, 1974). The techniques became progressively more 

objective, leading eventually to the development of numerical taxonomy 

methods, based on the ideas of Adanson (18th century). 

According to the Encyclopaedia of Statistical Sciences (1981) it was in the 

biological and sociological disciplines where the first attempts were made to 

formally approach clustering, (Zubin, 1938). Only recently, in the 1950s, when 

more powerful computing systems became available, researchers of the 

mathematical and statistical disciplines started to formalise clustering methods. 

Owing to this, a vast number of different clustering algorithms started to see the 

light even to the extent that it was introduced as an independent scientific field 

(Journal of Classification, first published in 1984 and the International 

Federation of Classification Societies, founded in 1985). 

2.1.1 . Applications of Cluster Analysis 

In mineral processing, the visual appearance of the froth phase is used as a 

controlling mechanism of industrial flotation plants (Moolman et aI., 1995). 

Other than this, the experience of a human operator has a direct bearing on the 

stability of the plant. It is clear why these kinds of processes are not optimally 

controlled. Digitised images of the froth structure can be extracted and cluster 
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analysis can be performed on this data to unravel the kind of structure (number 

of different groups) present within the data. This information can further be 

employed in studies such as discriminant analysis to obtain some knowledge 

concerning the different clusters and also to classify new observations at later 

stages. All this may help to interpret images with regard to the behaviour and 

control of the plant. 

In mechanical and automation engineering the design of a cellular construction 

system starts with two group formation tasks, namely part-family formation and 

machine-cell formation (Wang, 1998). The former activity clusters parts with 

alike geometric features, whereas the latter assembles dissimilar machines, 

dedicating them to the manufacture of one or more part families. Cluster 

analysis is employed to find part-family or machine-cell representatives in 

order to obtain a set of the most extreme parts or machines. These 

representatives are utilised in further analyses (a linear assignment model) to 

obtain a highly effective group formation algorithm for machine-cell and part­

family formation. 

There is substantial interest in the petroleum industry in testing new blending 

components in such a way as to relate the blending performance of a particular 

octane-quality enhancing component to its concentration, as well as to the 

properties of the base fuel (Zemroch, 1986). The postulated model includes 

terms in base-fuel properties. Cluster analysis can be used to obtain a subset of 

design points from a list of base-fuel candidates so that these selected points 

have as even a spread as possible over the design space. An assumed model can 

be efficiently estimated from a design with such evenly spread points. 

Environmental studies can also benefit from the use of cluster analysis. Neural 

networks together with clustering techniques, in particular a hierarchical 

clustering method, was employed to investigate a pollution problem in 

Germany. It was discovered that a considerable source of dioxin found in the 

river Elbe, soils from the flood plains of the river Elbe, the Hamburg harbour 

and soils originating from dredging materials, originated from the dioxin 

contaminated region of Bitterfield (Gotz et aI., 1998). It was indicated that 
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metallurgy processes, as well as chemical production, lead to dioxin 

contamination of the Bitterfield regIOn. Moreover, the main dioxin source 

accountable for the Hamburg contamination, not affected by the river Elbe, was 

of thermal origin and the cause was most likely a plant in Bitterfield. 

In process engineering, poor running of production machinery undoubtedly has 

a negative influence on the company. The occurrence of serious process 

variations causes stable process settings to move towards unstable regions. The 

incidence of production faults may not easily be resolved and in situations 

system failures cannot be prevented, it may lead to temporary machine 

shutdowns. Defective products either result in product waste or the products 

necessitate the process of re-work. Owing to the increasing pressures on 

industrial demands, the development of methods aimed at improving different 

aspects of production strategy is imperative. Process problems that can be 

described by large unwanted variations in machine processes, can usually be 

seen in the physical evidence of the data. By means of cluster analysis, Sutanto 

and Warwick (1995) studied the complex internal processes of an i:r:dustrial 

production machine in order to improve product quality and machine efficiency. 

They also demonstrated how to categorise machine behaviour and how to 

identify regions of good and poor machine behaviour. The clustering technique 

separated areas of the process space, describing different types of machine 

states. This information on machine behaviour is important where diagnosis 

and predictions of machine behaviour must be made. For instance, it is then 

possible to predict when a machine is expected to fail and thus the necessary 

precautions can be taken. 

Cluster analysis was also applied in a situation of soil pollution, where it 

assisted in locating existing pollution patterns as well as the detection of main 

emission sources. The problem occurred at the Maxhiitte Unterwellenborn, a 

large metallurgical plant in Thuringia (Germany). A cement mill was situated 

on the north-eastern part of the plant. Over a period of four decades the topsoil 

surrounding the plant was contaminated with heavy metals through dustlike 

emissions. After samples were drawn, the heavy metals were digested with 

aqua regIa. Some of the heavy metals were analysed by means of atomic 
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absorption spectrometry and inductively coupled plasma-atomic emission 

spectrometry (Einax and Soldt, 1999). The results obtained through cluster 

analysis showed the presence of two maim clusters; the first group contained 

heavily polluted points and the second group consisted of moderately and 

slightly polluted points. However, the data were split up into three groups, 

namely heavily, moderately and slightly polluted observations. Using these a 

priori classes as input into other multivariate statistical procedures, the three 

groups of different pollution states were confirmed. These detected pollutant 

patterns indicated the sources of emission. 

2.1.2 Background on Cluster Analysis 

The aim of the research and the type of input data will determine which 

clustering procedure to follow, as the numerous different combinations of 

algorithms and input structures result in just as many different solutions. These . '.. 

different clustering methods provide clusters with uncommon features, even to 

the same problem. Therefore, it is imperative to know exactly what kind of 

input you have and the results you anticipate. 

The input structures for the clustering algorithms can take either the form of: 

• an n x p matrix, where the rows and columns correspond to the observations 

and the variables, respectively. This structure is known as two-mode 

because the row and column units are different; or 

• - an n x n proximity matrix, where the entries can either be similarities or 

dissimilarities between all pairs of objects. This proximity matrix is said to 

be one-mode since the row and column units are the same. 

The entries in a dissimilarity matrix are usually metric distances between all 

pairs of objects, but there are also other ways in which they can be defined. For 

instance, a dissimilarity matrix can also consist of subjective evaluations from 

more than one individual, typically found in the social sciences or market 

research, such as evaluating different groups' behaviour regarding sports being 
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played on Sundays. Due to this fact we speak of dissimilarities instead of 

distances. Entry (i, j) in a dissimilarity matrix indicates to what degree objects i 

andj differ. The greater this value, the more these two objects differ. 

The distance often used for cluster analysis is the Euclidean distance, defined as 

follows 

d(x, y) (2.1) 

= .j(x-y)'(x-y) 

where (x, y)! is the transpose of the venctor (x - y) 

Equation (2.1) corresponds to the square on the hypotenuse in p dimensions or, 

in other words, the straight-line distance between the points with co-ordinates 

(Xj,X2, ... ,xp) and (yj,Y2, ... ,Yp). In the situation where the variables do not have 

equal variances, or there is a correlation among them, the Euclidean distance is 

not useful since this distance measure does not incorporate the variances or 

covariances of the variables. However, standardising the variables to unit 

variance prior to computing the Euclidean distances, can solve the problem of 

unequal variances. 

The statistical distance, the Mahalanobis distance, simultaneously resolves both 

cases where the Euclidean metric fails, as it standardises all variables to the 

same variance in the sense that a random variable with a larger variance than 

another, receives relatively less weight. Equally, two highly correlated variables 

··contribute not as much than two less correlated variables, thus the Mahalanobis 

. distance eliminates correlations. The Mahalanobis distance is: 

d(x, y) ~(x - y)' 8-1 (x - y) (2.2) 

where 8 is the pooled within groups covariance matrix. Owing to the use of the 

inverse of the matrix 8, correlations between variables are eliminated and the 

variables are standardised to the same variance. However, without pnor 
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Stellenbosch University  https://scholar.sun.ac.za



information regarding the different groups, this r,neasure of distance cannot be 

computed (Johnson and Wichern, 1988). Consequently, the Euclidean distance 

is the most popular choice of a distance function. Additional distance metrics 

include the j\1anhattan (city block) distance, which is the sum of absolute 

differences across variables for two observations. The Minkowski distances is 

yet another distance used, with the Euclidean and Manhattan distances being 

special cases of the Minkowski distance, as mentioned by Kaufman and 

Rousseeuw (1990). Both the Euclidean distance (2.1) and the Manhattan 

distance satisfy the following axioms: 

(Dl) d(i, j) ~ 0 

(D2) d(i, i) = 0 

(D3) d(i, j) = d(j, i) 

(D4) d(i, j) ~ d(i, k) + d(k, j) 

As said previously, not all dissimilarities are computed by means of distances 

and in general, dissimilarities satisfy Dl through D3 but D4 is not met. From 

these ineqUalities (Dl - D3) we can conclude that a di~similarity matrix is a 

non-negative symmetric matrix with zeros on the diagonal. 

A similarity matrix is in effect the opposite of a dissimilarity matrix. The 

similarity coefficient sri, j) signifies the likeness of objects i and j. A similarity 

coefficient always falls within the range between 0 and 1. As this coefficient 

approaches one, the more two objects are alike, and vice versa. 

For a similarity matrix, the following specifications hold: 

(81) 0 ~ sri,)) ~ 1 

(82) sri, i) = 1 

(83) sri, j) = s(j, i) 

Again we can conclude from these statements that the similarity matrix is a 

symmetric matrix with zero-entries on the diagonal, and the off-diagonal 

elements lie between 0 and 1. Similarities are not computed from distance 

functions, but are obtained through other ways such as opinions on a certain 
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idea. Some clustering methods require as input a dissimilarity matrix and when 

the actual input is similarities, they can easily be transformed to dissimilarities 

through the following equation: 

d(i, J) = 1 - sri, j) (2.3) 

Clustering algorithms can primarily be grouped into two mam groups, VIZ., 

hierarchical and non-hierarchical/partitioning methods, though other 

procedures are available but are used less frequently. 

2.1.2.1 Hierarchical Clus~ering 

As the name suggests, hierarchical clustering forms a hierarchical grouping of 

the objects. Hierarchical techniques can be used to group either the attributes or 

. the items. We are concerned with two types, namely that of agglomerative and 

divisive clustering methods. These two hierarchical techniques work in 

opposite directions (Johnson and Wichern, 1988). In the former case, each 

object initially forms a cluster on its own and with each successive step the two 

closest or most similar objects are fused into one cluster. This procedure 

repeats itself until all the objects belong to the same cluster. Divisive clustering 

requires the dissimilarity matrix measured in distances as input, whereafter the 

procedure starts with all the objects helonging to one cluster. At the first step 

the cluster is split into two parts in such a way that the objects from the 

distinctive clusters are as dissimilar as possible. This'subdividing continues in 

this manner until each object forms its own little cluster. 

The input structure used for agglomerative clustering is either one of the 

proximity measures, i.e. similarity or dissimilarity measures. A number of 

algorithms exist in this section and they all operate according to the same 

fundamental pattern, where linkage methods are of the better-known techniques. 

Single link or the nearest neighbour method sequentially fuses those two groups 

having the smallest distance of all the closest two members belonging to distinct 
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groups. The linkage method where the smallest distance of all the distances 

between the furthest members (neighbours) from different groups is the decisive 

factor is called complete link. Average link combines those two clusters having 

the shortest average dissimilarity among all pairs of objects in the respective 

groups, with pair members belonging to distinct clusters. The different linkage 

methods are demonstrated in figure 2.3. Centroid cluster analysis, median 

cluster analysis and Ward 's method are some of the other agglomerative 

methods available. 

a)~ 

b) 

Figure 2.3: Demonstration of the different linkage methods: (a) Average 

link (b) Single link (c) Complete link. 

The results obtained by agglomerative and divisive clustering procedures can 

graphically be displayed in a two-dimensional graph known as a dendrogram. 

A disadvantage of agglomerative clustering is that the reallocation of objects are 

not allowed, since once an object has been fused into a cluster-entity, the 

process cannot be reversed as this fusion is permanent. Divisive clustering does 

not have the problem of suffering from initial decisions, as the large clusters are 

established first. However, the drawback of this technique is a computational 
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one (Kaufman and Rousseeuw, 1990). Considering all possible combinations 

of two distinct clusters in the first step results in an enonnous amount of 

calculations, even for small data sets. This is the reason why this technique has 

not received much attention as a clustering method. The single link method 

tends to fuse clusters whenever the groups are not sharply separated, i.e. the 

clusters are touching. This tendency is referred to as chaining. Ward's method 

and the other two linkage methods have the propensity to find spherical clusters 

in data, even though the real clusters take on other fonns. Therefore, it seems 

that these methods inflict certain structures on the data instead of extracting the 

true ones. 

2.1.2.2 Non-Hierarchical Clustering 

Non-hierarchical clustering techniques are also known as partitioning methods 

since they divide the objects into k clusters, where this integer k has to be 

provided by the user. This differs from hierarchical clustering where the 

number of groups is not set a priori. The main difference between hierarchical 

clustering and this method, apart from the fact that the raw data can be used as 

input in the latter case, is that this procedure allows objects to be regrouped if it 

becomes evident at a later stage that items had previously been incorrectly 

clustered. 

Partitioning methods are not only used to reveal the 'natural' groups present in 

the data, but can also be used to inflict a certain configuration on the data. For 

example, dividing a city up into different polling stations for elections. 

Certainly, not all choices of k will yield the 'natural' clusters or the kind of 

clusters one wishes to acquire, therefore, it is recommended to run the algorithm 

several times with different values of k and choose that k which reveals the most 

meaningful results and interpretations. 

Partitioning around medoids is one of the non-hierarchical techniques that is 

used on a regular basis. This algorithm searches for k representative objects, 

known as medoids, which are centrally situated within the clusters (cf. Kaufman 

and Rousseeuw, 1990). The medoids are computed in such a way that the 
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average distance of all the objects to their 'closest' representative object is 

minimal. The clusters are then found by appointing the remaining objects to the 

group with the most similar medoid. 

K-means clustering introduced by MacQueen (1967), is possibly the best known 

of the partitioning methods. The steps involved in this procedure are: 

• Select an initial set of k clusters; 

• Move each observation to the cluster with the nearest centroid/mean and 

recalculate both clusters' means receiving and losing the object; and 

• Continue in this manner until no reassignments are made. 

As with the k-medoid method, the distance referred to here is usually the 

Euclidean distance. These two partitioning methods (k-medoids and k-means) 

reveal a resemblance; where the first method attempts to minimise the average 

distance, k-means tries to minimise the average squared distance. The first step 

in k-means can be changed so that k initial centroids (seed points) are specified 

instead of clusters. 

Fuzzy analysis is yet another non-hierarchical technique. This method stands 

apart and has nothing in common with the two previous techniques. It is said 

that the above mentioned methods are hard or clear-cut clustering methods since 

each object is allocated to one and only one cluster. An item that lies between 

two clusters must be assigned to one of the clusters. Fuzzy analysis, on the 

other hand, spreads out each object over all the different clusters and assigns a 

membership coefficient Bij to each object i and cluster} (Struyf et aI, 1997). 

This coefficient Bij, specifies to which extent item i belongs to cluster j. 

The membership coefficients satisfy the following: 

• Bij ~ 0 for all i = 1, .. . ,n and all} = 1, .. . ,k 

k 

• LBij = 1 = 100% for all i = 1, ... ,n 
}=1 

Thus, fuzzy clustering does not allocate an observation to exactly one cluster, as 

is the case with the other two methods. To illustrate this method, figure 2.4 
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shows points that can be classified with confidence as well as points of which 

their cluster membership is not quite clear . 

• 

• • • 
• • b • • cluster 1 

• 
• 

• • 
• • • • • c • • • 

• • • 
• • • • • • • .a • • • cluster 2 • • • • 

• • 
cluster 3 

Figure 2.4: Illustration of fuzzy analysis clustering intermediate points. 

First of all, there is no doubt that observations a , b and c belong to clusters 

three, one and two respectively. However, items d and e are more difficult to 

group since object d lies almost in the middle amongst all the groups and item e 

are approximately centrally located between clusters two and three. By the use 

of membership coefficients, fuzzy analysis solves this problem differently than 

other methods would. Table 2.1 lists these coefficients. 
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Table 2.1: Membership coefficients corresponding to figure 2.4. 

MEMBERSmp COEFFICIENTS '" . 
" 

.. ~ " 

. Object Cluster 1 Cluster 2 Cluster 3 

a 0.05 0.05 0.90 
. 

b 0.90 0.05 0.05 , 
, 

c 0.05 0.90 0.05 

d 0.34 0.33 0.33 
',. 

e 0.10 0.45 0.45 

Considering the membership coefficients in the above table, we see items a, b 

and c belong mainly to clusters three, one and two, respectively. Because item 

d is situated almost in the centre between the three groups, it belongs for. 34% to 

cluster 1 and for 33% to clusters two and three. Observation e is not as 

ambiguous as item d. It lies almost halfway between groups two and three, thus 

it belongs for 45% to both these groups and only for 10% to group 1. 

The k-medoids are computed, unlike k-means where the initial clusters or seed 

points are chosen at random. Both these techniques assume that the clusters they 

seek are spherical and this is a drawback, because if the data' s actual clusters 

are of different shapes, they will most probably not be discovered. There is a 

good chance that the natural groups in the data will not be discovered since the 

number of clusters k, to be distinguished, are set beforehand by the user. Fuzzy 

analysis returns as output an n x k matrix with the membership coefficients as 

the entries, thus interpreting and deciding on the final clusters is a difficult task 

purely because of its size. 
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2.1.2.3 Density Seeking Techniques 

This clustering procedure concentrates on what is probably the most instinctive 

and logical approach to cluster analysis. By portraying the data as points in 

metric space, clusters will noticeably be the areas that embody dense collections 

of points. Clustering techniques that search the data for areas of high densities 

or modes fall in this category and each mode in the data is indicative of a 

cluster. It is mainly due to' the weakness of the single link hierarchical 

clustering technique, namely chaining, that led to the development of many of 

these kind of algorithms (Everitt, 1974). 

Mode analysis, developed by Wishart (1969), is the best-known method in this 

category. A sphere of radius r, which surrounds every observation, is searched 

for 'dense points'. Starting with a small r, the number of other points that fall 

within the observation's sphere is counted and if there is at least a specified 

number, say k, then the centre point/observation is called a dense point 

(Chatfield and Collins, 1980). The remaining points, for which less than k other 

points fall within their sphere, are labelled non-dense points. This radius r is 

steadily increased so that the larger the r, the more points become dense until all 

the points fall within the same sphere. There are four possible options 

regarding the introduction of each new dense point: 

• The distance between the new point and all the other dense points is greater 

than r. In this situation the new point forms the nucleus of a new cluster and 

so the number of clusters increases by one; 

• The new point falls Within a distance of less than r from at least one of the 

other dense points belonging to only one cluster, and thus is added to the 

same cluster; 

• This new point falls within a distance of less than r from more than one 

dense point, with the dense points belonging to distinct groups, which leads 

to the fusion of the different clusters; and 

• With each introductory step of a new point, the smallest distance d, among 

dense points belonging to separate clusters is calculated and compared to 

some threshold value. If d falls beneath this threshold value, these separate 
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clusters are united. This threshold value is the average of the 2k smallest 

distances from each individual new point. 

This method proposed by Wishart (1969) is scale-dependent, furthermore the 

method assumes that the modes are spherical and this drawback may lead to the 

masking of genuine multimodality in the case where the modes are not 

spherical. 

2.1.2.4 Mixture Models 

This method is more formal than any of the techniques discussed previously 

since it has a probabilistic approach (Everitt and Dunn, 1991). Some 

resear<;hers consider probability models for the proximity matrices, whereas 

others prefer to use the raw data, with a certain kind of probability density 

function as its m~del, called a finite mixture density. Thus, there is no need to 

decide upon a proximity measure prior to the clustering. A model for k clusters 

can be given by the popUlation density 

k 

f= LPjfj (2.4) 
j=1 

This is a mixture of components jj, in proportions Pj, which respectively 

represent the. underlying density function of cluster j and the proportion of 

objects belonging to group j. A general assumption is that all jj belong to the 

same parametric family. For two univariate normal groups (2.4) becomes 

(2.5) 

where P is the proportion of objects in group 1 and the parameters f-lI, f-l2, O"j and 

0"2 represent the means and standard deviations of the continuous variable x for 

groups one and two, respectively. As can be seen, this method involves the 
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estimation of parameters PI, P2, (J), a2 and p, which is usually performed by 

means of maximum likelihood estimation. Observations are assigned to that 

group for which their probability of belonging is the maximum. This is, 

P(JI x) = pjJj (x) /I(x) (2.6) 

is maximised, where P(JI x) is the posterior probability that observation x 

belongs to group j. The extension of equation (2.5) to k groups is 

k 

f{x) = LPjN(pj,aJ (2.7) 
j=1 

In the case of the data being multivariate normal (MVN), equation (2.7) 

becomes 

k 

f{x) = LP j MVN(/1j,Lj) (2.8) 
)=1 

It is usually assumed that all Jj are from the multivariate normal family. 

However, the application of equation (2.4) is not restricted to multivariate 

normality but may be applied to general sample spaces. For more discussion on 

this topic the reader is referred to Everitt and Hand (1981). 

Due to the fact that there may be more than one solution to the maximum 

likelihood equations, this method suffers from the problem of sub-optimal 

solutions. 

2.1.2.5 Other Clustering Techniques 

As mentioned in the beginning of this chapter, there is a wide variety of 

clustering algorithms and only the more popular and general techniques have 

been introduced. Clumping techniques, where the clusters are in fact allowed to 
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overlap, the inverse method or Q-factor analysis, latent structure analysis and 

Sammon maps, are just a few of the numerous different available techniques. 

Everitt (1974) provides a thorough overview of all the different clustering 

methods. 

As noted previously, variables that vary remarkably will have a definite effect 

on the results since the variable with the largest variance has the greatest impact 

on the clustering. This also holds for variables that are not commensurate. To 

overcome these problems the variables can be scaled to unit variance, unless 

some variables are more important than others, and it is possible to quantify 

their relative importance. Another aspect to bear in mind is correlation between 

variables. The solution is to perform the clustering on the principal components 

retained (Green, Frank and Robinson, 1967). Principal components linearly 

summarise the original data in such a way that the first few components account 

for almost all the information in the data set and the newly acquired variables 

(components) are not correlated. However, Press (1982) argues that 

i¢'ormation lost through the deletion of the last few components, espe?ially in 

small samples, results in erroneous findings. 

'Another problem that can affect results tremendously, is that of outliers. For 

instance, in the case of partitioning methods an outlier can lead to the formation 

of a cluster with very dispersed group members. Also, it is known that 

hierarchical clustering is not robust to outliers. Therefore it is essential to solve 

this problem prior to any clustering. 

2.2 Classification Analysis 

Classification analysis is the second of two objectives or goals concerning the 

separation of groups. There are two objectives because there are two kinds of 

observations. Firstly, there are those observations with known group 

membership, called the training samples. Secondly, there are items for which 

no. information regarding their group identity is available. The objective is to 
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classify these objects as belonging to one of the k groups m the training 

samples. These observations are known as the test samples. 

The first part of the two-fold procedure of group separation deals with the 

descriptive aspect, where the goal is mainly to obtain linear functions 

(discriminant functions). These functions combine the p attributes linearly in 

order to maximally elucidate the differences between the k distinct groups of the 

training samples. Via these discriminant functions the relative contribution of 

each of the p variables, regarding group separation, can be identified as well as 

the discriminant space is obtained This representation of the projected points 

illustrates the construction of the k groups optimally. The descriptive aspect of 

group separation is called discriminant analysis. For a comprehensive overview 

of the different discriminant functions, the reader is referred to Rencher (1995). 

The second stage involves the test samples and is referred to as the predictive 

aspect of discriminant analysis. The unknown points' attributes are evaluated 

by a linear. or quadratic function called the classification rule, which is based on 

the discriminant function. This procedure leads to the assignment of each point 

to one of the k groups. This procedure is called classification analysis to clearly 

distinguish it from discriminant analysis. 

A point to bear in mind is the possibility that the object you wish to classify 

may in fact belong to a total different group than those included in the training 

samples. As will be seen in the following sections, most of the classification 

rules are designed for groups coming from a normal distribution. In practice the 

data sets are rarely distributed normally especially in the fields of engineering. 

However, if the measured attributes are not restricted to only a small range of 

different values, the measurements can be transformed so that their distributions 

more closely resembles a normal one. 

The performance of the classification rule can be evaluated by some available 

measures. These measures are based on the training samples and not the test 

samples. The expected cost of misclassification is one of the measures to be 

considered if access to such information is available, however, this is frequently 

/ 
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not available. Results acquired through classification can conveniently be 

displayed in a classification table or confusion matrix, in order to easily count 

the number of correct and misclassifications. The probability of 

misclassification, known as the error rate, is the more frequently used 

evaluation measure. Some of these rates include: 

• The optimum error rate - if all the parameters are known, this rate can be 

computed; and 

• The actual error rate - the probability that the classification rule, based on 

the present sample, misclassifies a future observation. 

Various methods, assuming normality, exist to estimate the error rates. A few 

estimators that can be applied in any context include: 

• apparent error rate; 

• leave-one-out; 

• bootstrap; 

• cross-validation; and 

• a method using a third sample, called the validation -sample. 

See appendix 1 for more information regarding these techniques. 

2.2.1 Classification into Two Groups 

The most popular way to assign an observation to one of two groups is by 

means of the linear classification rule, which states that observation 

Xi = (xu, Xi2 , .•• , Xip) is assigned to group gJ if 

(2.9) 

and it is assigned to group g2 if 

ax (2.10) 
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where Xl and X2 , nJ and n2 denote the vector means and sample sizes for 

group 1 and group 2, respectively. 8p J is the pooled sample covariance matrix 

(2.11) 

The sample covariance matrices for groups 1 and 2 are denoted by si and s;, 
respectively. Fisher (1936) proposed the linear discriminant function 

(LDF), (Xl - x2 )'8;: x, thus in the two-group situation the linear discriminant 

and linear classification functions are alike. The methodology (2.9) and (2.10) 

were developed under the constraint that the two groups have a common 

covariance structure. No assumptions were made regarding the distributions of 

the groups. Consequently this procedure is basically nonparametric. 

Nevertheless, if the two populations are normally distributed with equal 

covariance matrices, swapping the parameter estimates with the population 

parameters leads to an optimal performance of the linear classification rule. 

In other words, it results in a minimum probability of misclassification (P) 

of the observations. If P(2II) is the probability of classifying an item from gJ 

incorrectly as coming from g2, and vice versa for P(112), then in the above­

mentioned situation P = 1l(1)P(2II) + JZ(2)P(112) is a minimum, where n(i) is 

the probability that an item belongs to gi. 

Provided the proportion of observations in each group, PI and P2 with P2 = 1 - PI, 

is known beforehand, a variation of the linear classification function can be 

obtained. The density functions for both groups,j(Xlgl) andj(xlg2), are needed 

in order to employ the group prior probability estimates. The classification rule 

becomes: allocate x to group gJ if 

(2.12) 

or otherwise assign it to group g2. This is known as the Bayes procedure. 

Equation (2.12) can still be used even when the group prior probability 
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estimates are unknown, by setting both PI and P2 equal to 0.5. This implies that 

the prior probabilities of an item belonging to either of the groups are equal. 

In the situation of the two populations being normally distributed with equal 

covariance matrices, as mentioned previuosly, equation (2.12) changes to 

(2.13) 

If equation (2.13) holds, then x is assigned to group gi. Because the parameter 

estimates are used, this procedure is only asymptotically optimal, meaning that 

optimality increases as the sample size enlarges. As can be seen from equation 

(2.13) if PI = P2, then equation (2.13) becomes equation (2.9). 

Some noteworthy remarks regarding the two-group LDF, are: 

• There is a relation between the LDF and multiple regression; 

• Some of the LDF's advantages include its simplicity; the standardised 

coefficients also reveal information concerning differences among the 

groups; the already mentioned graphical aid of projections of the points onto 

the optimal discriminant plane; the fact that the normality assumption is not 

required; and also the LDF's performance compared to more complicated 

methods are satisfactory; and 

• Variable selection can be done by methods such as stepwise variable 

selection and/or computing of the Mahalanobis squared distances between 

the two groups for each variable. It is imperative to have the correct number 

of variables included in the discriminant function whereas too many may 

cause the function not to generalise and too few may not be able to capture 

the ne~essary information in the data. See Gnanadesikan (1977) for more 

information on all these issues. 
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2.2.2 Classification into Several Groups 

In the case where the k groups have similar covariance structures, the 

population covariance matrix can be approximated with the pooled sample 

covariance matrix across all groups, i.e. 

(2.14) 

where nj and Sj are respectively the size and sample covariance matrix for group 

j, N = L
j 
n j and E is the pxp'etror matrix with p the number of variables. 

The error matrix is denoted by 

E 
k n X ' ""(x .. -x. x .. -x.) L..J L..J)I ). )1 ). (2.15) 

j=l i=l 

"x.x' - " ~x. x' L..J )1 jI L..J ).). 
ji j n 

The linear classification rule for the several-group case, corresponding to 

equation (2.9) and equation (2.10) for the two-group situation, is 

(2.16) 

which assigns item x to the group for which equation (2.16) is maximum. As in 

the two-group situation the Bayes procedure can also be implemented for 

several groups. Observation x is then allocated to that group for which pjj(xlgj) 

is a maximum, where j(xlgj) is the density function for group j and Pj is the 

probability estimate of an observation belonging to it. Under the assumption of 

normality with equal covariance matrices for all the k groups, and the 

availability of the respective prior probabilities of group membership, 

PI, P2. ···,Pk, enables the use of 
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(2.17) 

Again, observation x is assigned to that group j which produces the largest 

value in equation (2.17). In the case where all the group prior probabilities are 

equal, equation (2.17) becomes equation (2.16). 

The linear classification rule cannot be applied when the groups' covariance 

matrices differ. Observations tend to be classified as coming from the group 

whose variables vary the most. Instead, the quadratic classification rule is 

employed, which states that x belongs to the group yielding the largest Qlx), 

indicated as follows 

(2.18) 

Normal distributed groups render equation (2.18) the best classification rule, 

which in the case of equal covariance structures,_ reduces to the linear 

classification rule. When prior probabilities PI, P2, ... ,Pk , are not available or 

equal, then the term In Pj should be deleted in equation (2.18). In situations 

where the population means are equal, this rule overshadows the linear rule. In 

the case of small samples and when normality is not met, caution should be 

taken with the use of equation (2.18). In this situation attempts should be made 

to transform the data to near-normality. 

2.1.1 Other Classification Methods 

In cases where normality of the data sets cannot be assumed, it is a good idea to 

contemplate other methods such as logistic regreSSion classification. In the 

two-group case, it is assumed that the groups are from a single sample, i.e., 

n = n] + n2. A dummy variable y, is introduced for every item Xj with 

j = 1, 2, .. . ,n; where y = 1 for the nI items coming from group gI, otherwise 

y = O. Assuming equal prior probabilities of group membership, the linear 
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classification function v = a + x' jJ is employed, where the parameters a and ~ 

can be estimated by means of the maximum likelihood method. The likelihood 

function is 

n( exp(a+x~p) J . tI ( 1 ) 
}=I 1 + exp(a + x~P i=nl+1 1 + exp(a + x;p) 

(2.19) 

with the estimates chosen so as to maximise equation (2.19) and P= [PI, ... ,Ppj, 

where p is the number of variables. The scores obtained via the linear 

classification function v are used to allocate the unknown observations. If an 

item's score is positive it is assigned to group g]' whereas a negative score will 

lead to the observation's allocation to group g2. Variable selection, as with the 

other methods, is a problematic area. It is proposed to rather use the LDF in 

cases where the data are distributed normally. A disadvantage of this method 

lies in its excessive computations. 

The nearest neighbour classification rule was the first nonparametric 

classification method, which was developed by Fix and Hodges (1951). This 

rule is rather straightforward. The distance between the new point xi and all 

other points are acquired by the distance function, 

ft:- i (2.20) 

For equal group prior probabilities, xi is labelled as belonging to group gi if the 

majority of the h nearest points to xi come from group gi' Let hi indicate the 

number of points belonging to group gl and let h2 be the number of points from 

group g2, with hI + h2 = h, then the classification rule becomes: assign xi to 

group gl if 

(2.21) 

where nl and n2 are the sample sizes for groups one and two, respectively. If 

equation (2.21) does not hold, then observation xi is assigned to group g2. 
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Taking group prior probabilities into consideration may lead to the further 

refinement of equation (2.21). Thus equation (2.21) changes to 

(2.22) 

If equation (2.22) holds, then Xj is allocated to gI, otherwise to g2. Adapting 

these rules to the several-group case is quite simple. That is, equation (2.21) 

hi 
changes as follows: assign Xj to that group yielding the largest proportion -;; , 

among the h nearest points to observation xh with hj the number of items 

belonging to group gj. The value of h has to be chosen by the user and a good 

method would be by trying several values for h, then choosing that h yielding 

the best error rate, or h >::: F is another good value as proposed by 

Loftsgaarden and Quesenberry (1965). 

Unknown or non-normal density functions can be estimated directly from the 

data by an approach known as the kernel estimator. An individual, Xj will be 

allocated to the group for whichpj J ( Xj I gi) is a maximum, where i=1,2, ... ,k. 

In the case of the variable being continuous univariate, the procedure is as 

follows: Firstly, denote the density of a variable x by j(x). By using the sample 

Xl, X2, ... ,xn , the density of X is to be estimated. The proportion of observations 

falling into the interval (xo - b, Xo + b) is an uncomplicated estimate of the 

density j(xo) , for a random observation Xo. Denote the number of points falling 

into this range by N(xo), then the estimate of P(xo - b < Xo < xO + b) would be 

N(xo)/n. This -is approxiInately equaCto 2bj(xo): Consequently the estimate of 

the density j(xo) is: 

(2.23) 
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It is possible to define j(xo) in terms of all Xj by denoting 

K(u) = { t for lui ~ 1 
o for lui> 1 

The function K(u) is called the kernel. 

(2.24) 

This causes N(xo) to equal 2 I K[(xo - x j )/ b], which changes equation (2.23) to 
j=1 

(2.25) 

The kernel defined in equation (2.24) is a rectangle and thus the plot of j(xo) 

will be a step function, because when Xo is too far away from Xj the kernel will 

be 0 and thus, there will be a drop in the graph. A smooth kernel must be used 

to obtain a smooth j(xo). Various density functions can be used as the kernel. 
. . 

The family of the density function of the kernel does not lead to any 

assumptions regarding the density j(x). Figure 2.5 illustrates the kernel estimate 

with individual kernels. Silverman (1986) provides a thorough overview on 

nonparametric density estimation. 
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Figure 2.5: Illustration of a kernel estimator with individual kernels. 

Classification trees is yet another classification method which has recently been 

developed. This method resembles divisive hierarchical clustering in the sense 

that initially there is one group, consisting of all the objects. The classification 

rules are detennined by a procedure known as recursive partitioning. The group 

is split into two subgroups using two parts of a variable, which yield the whole 

variable space when combined. Each of the two subgroups are then further split 

according to another variable. This continues until the data are too sparse or the 

nodes (leaves) are pure, producing the classification rules. This procedure is 

computer intensive, resulting in a complicated tree. It is not on the same level 

as the LDF, as the descriptive feature is lost whereas LDF concentrates on the 

spatial partitioning of the groups. Figure 2.6 illustrates a classification tree. 

Each observation is evaluated by means of the rules and eventually the item is 

allocated to one of two groups, where the main difference among the groups are 

the absence or presence of a certain feature. 
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absent prese nt 
(6) (1) 

absent absent present present 
(J) ( ' ) (5) (6) 

Figure 2.6: Illustration of a classification tree. The first branch can be 

interpreted as IF % (UL 36.38 AND % Ag < 1.93 THEN the outcome 

ABSENT. 

Most of the clustering methods are quite appropriate for qualitative data, which 

yield more compact clusters, as is found in fields such as sociology and 

psychometrics, etc. Engineering data are of a more quantitative nature with 

interrelated variables that result in long stringlike clusters (Ginsberg and 

Whiten, 1991). Consequently the existing clustering algorithms do not yield the 

desired results. 

Another characteristic of process data is its usually high multidimensionality 

with complex internal structures and thus it is difficult to handle such an 

enormous 'bulk' of data to obtain certain results. A solution would be to fmd a 

simpler representation of the data, i.e., mapping the data onto a lower 

dimension, retaining as much of the information as possible in the original data 

set. As expected, mapping the data to a linear function will not generate the 

required results for it cannot capture the essential information in the data. 
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A clustering method is proposed, based on a non-linear approach that closely 

follows the internal structure of the data. This non-linear approach is known as . 
principal curves, which was developed by Hastie and Stuetzle (1989). 

Informally, principal curves are defined as those smooth one-dimensional 

curves that pass through the middle of a p-dimensional data set. Clustering will 

be performed on this one-dimensional representation of the multidimensional 

data, by means of a method similar in some sense to density seeking methods. 

Principal curves will also be incorporated in classification analysis, resulting in 

an alternative method of classification. The methodology of clustering and 

classification with principal curves is set out in chapter 3, with the experimental 

work regarding the topics following in chapters 4 and 5, respectively. 
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CHAPTER 3 

METHODOLOGY OF CLUSTER ANALYSIS AND 

CLASSIFICATION WITH PRINCIPAL CURVES 

Interpretations and conclusions regarding information in a raw data set cannot 

be accomplished at first sight. Therefore, statistical methods saw the light 

centuries ago in order to describe important features in the data. The actual 

problem of parameter estimation can be traced back to the Babylonian 

astronomers in the last three centuries B.c. (Pearson and Kendall, 1970). 

Gradually the nature of data sets became more and more complicated and the 

need arose for evermore complex statistics to be developed. The higher the 

dimensionality of the data, the more troublesome the analyses become. As a 

result it has always been an aspiration to diminish dimensionalities of data sets, 

retaining the information in the data, to simplify analyses. The mean vector of a 

swarm of points in p-dimensions only establishes the centre of the data cloud 

and is seldom an adequate representation of the data. 

Principal component analysis (PCA) has proven to be an excellent dimension 

reduction technique, in that the essential dimensionality of the data set k, is 

considerably less than the superficial dimension p, which is the number of 

variables. PCA was first introduced 100 years ago by Sylvester (1889) and is 

still used extensively today. The principal components are concerned with the 

core structure of a single sample of items measured on p variables. The 

components explain the variance-covariance structure of the data set by means 

of a few uncorrelated linear combinations of the original variables. The main 

goal of peA is dimension reduction where the components can be used as input 

into other statistical methods, such as cluster analysis. Another use is to 
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construct a scatterplot of the first two components to check for multivariate 

normality or outliers. More formally, the components linearly map the 

multifaceted data orthogonally onto a lower dimensional space, retaining almost 

all the information in the original data. Figure 3.1 illustrates the idea of 

principal component analysis of a two-dimensional data set. 

zl 

. --..,,-
."-

, • .",r 

y2 ".-; . 
".~' ... 

.' .' . . / . 

yJ 

Figure 3.1: The first two principal components of the data set. 

Since the variables are correlated, the points are not parallel to the axes denoted 

by the variables Y j and Y2. The principal components yield the natural axes of 

the points, indicated by Z j and Z2. As can be seen from the graph the points are 

maximally spread out along axis Zj. Thus, the first principal component Z j 

accounts for the most variability in the data set of all the components. Many 

statistical textbooks cover the subject of principal component analysis, for 

example Johnson and Wichern (1988). 

Engineering data are said to be data rich, but information poor. Therefore, as 

mentioned at the end of the previous chapter, an attempt to describe these types 
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of data by means of a linear representation is infidelity to the data for it will 

result in the loss of valuable information. An illustration of such loss. of 

information will be portrayed graphically in figure 3.4, which can be seen in 

section 3.2. A non-linear approach would seem more logical to summarise the 

data, of which many such approaches have been proposed. A method that 

developed the concept of a curve moving through the middle of a p-dimensional 

data set came to the light a decade ago and it is known as principal curves. 

3.1 Principal Curves 

Principal curves and principal components have two features in common. 

Firstly, in the event of the principal curve being a straight line, it is nothing else 

than a linear principal component. Secondly, both techniques concentrate on 

the orthogonal distances between the points and their projection onto the curve, 

in the sense that they both attempt to minimise the sum of the squares of these 

distances. That is, let I be a principal curve and 1/ a smooth family of curves 

(denoted by the subscript) with 10 = 1, then 

(3.1) 

where x is the p.dimensional data set (XER\ d2 is a squared distance measure 

(usually Euclidean) quantifying the fit of the curve to the data, It is the curve at 

iteration t. 

Owing to the two above-mentioned communal properties, principal curves are 

said to be a generalisation of principal components. Figure 3.2 demonstrates the 

orthogonal projections of the- points onto the principal curve. Hastie and 

Stuetzle (1989) formally defined principal curves to be those smooth one­

dimensional curves that are self-consistent for a data set or distribution. This 

implies that if all the items projecting onto a point on the curve are gathered and 

averaged, that average should then coincide with the point on the curve. This 

condition should hold for all such points on the curve to meet the self-
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consistency property. Recall the informal description of a curve as a smooth 

one-dimensional curve passing through the middle of a data set. Accordingly, 

the shape of the curve is determined by the structure of the data and if the data 

set contains outliers, the shape of the curve will definitely be affected, again 

emphasising the influence such observations have on results. 

Figure 3.2: Orthogonal projections of the points onto the curve. 

3.1.1 Definition of a Principal Curve 

Let Xi indicate a random vector in R P with a density of h. A one-dimensional 

curve in p-dimensional space is a vector f(A) of p functions (co-ordinate 

functions) of a single variable A, thus by definition if the co-ordinate functions 

are smooth, f is a smooth curve. The variable A, parameterises the curve in 

terms of arc length and provides an ordering along it. In other words, Aj is the 

arc length down the curve from fJ to ~" where Al = O. As a result these 

distances, Aj, wherej=l, 2, ... ,n, are analogous to the principal component scores. 
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The fj are the projections of the n points onto the line. When Ilf/ll == 1 it is called a 

unit-speed parameterised curve. Let f be such a smooth unit-speed curve in Jt 

parameterised over A c R 1, a closed interval, which does not intersect itself, 

i.e., Al *- A2 => f(AI) *- f(A2). Also let f be of finite length within any finite area 

inside R P, such as the spatial distribution of the data X. The curve f is self­

consistent or a principal curve of h if 

(3.2) 

for all A, where Af is defined as a projection index ofRP ~ R I, given by 

AreX) = sup,,- {AI! x - f(A)11 = infJlI! x - f(!J.)I!}. (3.3) 

The projection index AreX) of x, portrayed in equation (3.3), is the value of A for 

which f(A) is closest to x. If several such values exist, the largest one is used. 

3.1.2 The Principal Curve Algorithm 

This particular algorithm is the first principal curve algorithm, which was 

developed by Hastie and Stuetzle (1989). The starting step uses any smooth 

curve, usually the first principal component, and tests this curve for self­

consistency by means of projecting the data onto the curve and calculating their 

expected value conditional on where they project. In the situation where the 

conditional expectation coincides with the curve, the self-consistency feature is 

met and a principal curve is obtained, otherwise, the conditional expected curve 

is subjected to an iteration process until it (hopefully) converges. 

Mathematically the process to obtain the principal curve is: 

• Initialisation: Set f(O) (A) = x + aA, with a, the first principal component of X 

Set A (O)(x) = At<O)(X). 
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• Iteration: 1. Set f {}) (-) = E[XI AtV°-1) (X) = .J 

2. Define A (J)(x) = A M (x), V X E h 

3. Transform A(J ) so that f {}) is unit speed. 

4. Compute Id 2(X, f U» = d 2(X, f {}+I» 1 / d 2(X, f {}» , until it falls 

beneath some threshold value (usually 0.001). This is the sum of 

squared distances of the points to their respective closest points on 

the current curve. 

The curve is characterised by n-tuples of ("--'o,~) , which is assumed to be sorted in 

increasing order of A to form a polygon of which its geometric form does not 

depend on the actual values of the A'S, but only on their order. In practice, the 

conditional expectation at "-i is estimated by averaging all the items Xk in the 

sample for which Ak falls within a neighbourhood of Aj. This idea is graphically 

displayed in figure 3.3. 

• 

• 

• 

• 
• 

• 
• • 

Figure 3.3: Each point on the principal curve is the average of the points 

that project onto it. 
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The fraction of points that fall inside this neighbourhood is set by means of a 

parameter called span. If it is too small a value, the curve will follow the data 

too closely, including the possible noise within the data. On the contrary, a 

large value seems to interpolate the points. Another method used to search for 

the value of span is by means of an automatic technique known as cross­

validation (see appendix 1). The span that yields the smallest corresponding 

cross-validation-value is chosen as the parameter value. This method is used 

throughout the experimental work. 

3.2 Cluster Analysis using Principal Curves 

Employing the principal curve algorithm on the data set X, yields the principal 

curve. This one-dimensional representation of the set X: n x p is adopted as the 

'new' data set on which all further analyses will be executed, since the principal 

curve embodies the core structure of X. As mentioned formerly, the newly 

acquired 1 x n data vector can be referred to as the principal curve scores as 

these scores are the arc lengths along the curve. Therefore, all these values are 

positive with the smallest being equal to zero. 

The clustering technique is based on the statement that the curve is said to move 

through the middle of the data set, as well as on the initiative of density seeking 

clustering methods where clusters are defined as areas in space that enclose 

dense collections of points. If in fact the curve captures the core structure of the 

data set, and if there are natural clusters present, the representative data vector 

has to contain information regarding these clusters. 

Firstly the principal curve scores /..}, are sorted in increasing order. It is expected 

that points from a specific cluster can be associated with ordered scores on the 

curve that are relatively compact and their respective values will all fall within 

an evident range. Scores that do not fall within this scope are labelled as 
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belonging to a different cluster. As a result, such objects are thought of as 

dissimilar to those objects whose respective scores fall within the above­

mentioned range. When the data has clusters that are well separated there will 

be areas on the curve containing scores that are close together, corresponding to 

clusters, and there will be areas with no points. Such an empty area between 

two clusters is the decisive factor in this technique, namely where to distinguish 

between objects as belonging to different clusters. 

As mentioned earlier, figure 3.4 as can be seen below, demonstrates how 

mapping engineering data to a one-dimensional representation can result in the 

loss of information. However, this data set is not process data. It contains four 

well-separated clusters that can easily be identified by the eye, which is not 

typical of process data. This data is known as the Ruspini data (1970), which he 

originally used to illustrate fuzzy cluster analysis. 
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Figure 3.4: Data points with their orthogonal projections onto the first 

principal component. 

As observed in figure 3.4, when applying the proposed clustering technique to 

the first principal component of the bivariate data, only three clusters seem to be 

distinguished. The three clusters are identified as those dense regions of the 

projected points, separated by less dense regions. Reducing the dimension with 
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one by means of a linear summary, resulted in the loss of essential information 

in the data. This is the result of a data set, which appears easy to cluster. 

Process engineering data are of a much more complicated nature than this data 

set. Therefore, such data equally needs a superior mapping technique than the 

one just used, in order for minimal loss of information. 

The principal curve seems to be a more logical representation of the data in one 

dimension than the first principal component. The principal curve is fitted to 

the data set used in figure 3.4, which can be seen in figure 3.5 together with the 

projected points portrayed as black dots on the curve. 
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Figure 3.5: Data points with their orthogonal projections onto the principal 

curve. 

By mapping the data onto the principal curve and considering the projected 

points (black dots) on the curve, four clusters can be pinpointed in figure 3.5. 

The empty areas clearly distinguish the four groups. Already it is possible to 

conclude that the principal curve captured the essential information in the data 

and that the curve is a good one-dimensional representation of the original data. 

In order to formalise this idea, the differences between the consecutive, 

increasingly ordered principal curve scores are determined. The differences 
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amongst succeSSIve scores In the same cluster ought to be quite small, as 

opposed to the large difference between two successive scores pertaining to 

separate clusters. These large differences relate to the large empty areas 

between clusters, as can be viewed in figure 3.6 where there are 3 large empty 

areas. In order to decide visually where to partition the scores into different 

clusters, the differences between the consecutive, ordered scores are plotted in 

two dimensions in the following graph. 

0 ..,. 

0 
M 

'" ., 
<> 
C ., 
~ 0 

0 N 

~ 

o 

o 20 40 60 

Index 

Figure 3.6: Differences between consecutive, ordered principal curve 

scores. 

Three significant peaks are visible in figure 3.6, which indicates a large 

difference between two successive ordered scores, in other words it denotes an 

empty area. According to this information, the ordered scores are split at 

difference numbers 15, 35 and 52. This implies that the observations relating to 

the ordered scores 1 through 15, 16 to 35, 36 to 52 and 53 to the last item, 

respectively belong to clusters 1 to 4. The final cluster configurations based on 

these results can be seen in figure 3.7. 
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Figure 3.7: The four different clusters obtained via the splitting of the 

ordered principal curve scores. 

Hierarchical and partitioning clustering procedures like single link and k­

medoids, produced similar results than that obtained in figure 3.7. This implies 

that the proposed principal curve clustering method can in fact be regarded as a 

clustering technique. 

In cases where the clusters are not that well defined, the principal curve 

technique can also be applied. The empty areas may only be smaller or even 

non-existing, however, dense areas will still be present. It will be more difficult 

to decide exactly where one cluster ends, and another begins. In this situation 

the researcher should execute the procedure several times, splitting the points 

into different cluster formations under consideration. Each time the obtained 

clusters should preferably be plotted in the space of the first two or three 

principal component axes, as this space optimally separates the data. The final 

cluster configurations decided upon, should be that arrangement that yields the 

most interpretable and reasonable results. 
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3.3 Classification Analysis using Principal Curves 

Classification of objects can be considered as flowing directly out of the 

previous topic, where the different groups in the data set were identified. This is 

the starting point for classification analysis, where the distinct groups are known 

beforehand. There is now being searched for a method to maximally distinguish 

the k groups and learn the intrinsic structure of each of them in order to allocate 

new objects, of unknown origin, to one of the existing k groups. 

It is known by now that a principal curve summarises the core structure of a 

data set in a non-linear fashion. Hence, it would seem a good idea to use the 

principal curve in terms of describing each group's formation and also another 

area to demonstrate its versatility. After acquiring each group's principal curve, 

the methodology is to project every new observation onto the k different 

principal curves. This idea has previously been proposed by Chang and Ghosh 

(1998), but has not been explored in detail. By means of the Euclidean distance 

(2.1), it is possible to calculate how close the new point is from all its 

projections onto the different curves. Consequently, the classification rule is to 

assign the new item to that group yielding the shortest distance between the new 

point and its projected value on the principal curve. Figure 3.8 illustrates this 

concept. 
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Figure 3.8: Two distinct groups with their respective fitted principal 

curves. The new observation, a, is to be classified to the group yielding the 

shortest distance between the point and its projection. 

The proposed method of classification with principal curves is portrayed in 

figure 3.8. The new point, a, is projected onto the principal curve of each 

cluster, whereafter the Euclidean distances of the new point to all of its 

projections are calculated, yielding dl(a) and d2(a). The new observation is 

allocated to the cluster at the top, since the distance to its projection onto the 

principal curve of this group is the smallest. 

There is one problem though, namely that it is not possible to merely project the 

new item onto the principal curve in order to obtain its projected value. 

Principal component analysis (PCA) produces a principal loading for each 

variable, which determines the direction of the respective principal component, 

enabling the projection of new points. Unfortunately, unlike PCA, the 

algorithm of principal curves does not supply a model for the curve, only a 

related principal curve score and corrected data point are determined for each 

observation. 
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These corrected data points are a matrix corresponding to the original data set 

X, giving their projections onto the curve. For each of the k groups, a back 

propagation neural network with only one hidden layer is used to acquire the 

relation between the original data set and the matrix containing the corrected 

data points. This relation is in fact nothing else than the sought after principal 

curve model. Using the k trained neural networks, the new observations are 

used as input into every network and in this manner proj ections for every new 

point onto every group's principal curve can be obtained. 

3.3.1 Back Propagation Neural Networks 

Back propagation neural networks are also known as feed-forward neural 

networks, which is only one of numerous kinds of neural networks available in 

the literature today. Neural networks are a collection of simple computational 

components (units) that are systematically interlinked. Basically a neural net 

consists of the input 'layer, output layer and possible hidden layers, which are 

situated between the input and output layers. The layers are comprised of 

elements or nodes. The input nodes receive only the input data and distribute 

them to the network. The hidden layer can have any number of nodes and there 

can be more than one hidden layer. The nodes in a specific layer are linked to 

other nodes in consecutive layers through weighted connections. The structure 

of a back propagation neural network with three input, two hidden and three 

output nodes are illustrated in figure 3.9. 
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Figure 3.9: A back propagation neural net with an input-, hidden- and 

output layer containing three, two and three nodes, respectively. 

Neural nets are applied if the functional relation between two sets of data is 

desired. For instance, in multiple linear regression where the expected response 

y is related to the values x = (Xl, X2, .. . ,xp) through, 

p 

y=wo + l":wjX j 
j=l 

(3.4) 

the relation can be found by means of neural nets, as portrayed 

diagrammatically in figure 3.10. 

47 

Stellenbosch University  https://scholar.sun.ac.za



xl 

wl 
x2 

x3 

t-------
y 

wp 

xp 

Figure 3.10: Illustration of a simple neural network. 

The input layer contains as many nodes as there are variables (in this case p), 

whereas the output layer has the same number of nodes as the number of 

variables in the target data set (one). In this example there are no hidden layers. 

Equation (3.4) is actually computed in the single node of the output layer in 

figure 3.10. 

In a general back propagation neural net the data set is fed into the net through 

the input layer. The sum of the weighted inputs and the bias formulate the input 

to the transfer/activation function F. An often used transfer function for back 

propagation neural nets are the log-sigmoid transfer function that generates 

output values between 0 and 1, as the network input goes from negative to 

positive infinity. Sigmoid transfer functions used for the last layer produce 

outputs within a small range, whereas outputs of linear transfer functions for the 

last layer can take on any value. The values obtained through the output layer 

are compared to the target values and so the errors between them are computed. 
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Usually back propagation neural nets have more than one hidden layer 

containing sigmoidal nodes, followed by an output layer with linear nodes. 

These multiple layers with nonlinear nodes allow the network to learn nonlinear, 

as well as linear relationships between input and output data sets. The first step 

is an initialisation step, where the weights and biases are returned for each layer. 

The second step involves training of the network where the weights and biases 

have to be determined. The back propagation learning rule is a recursive 

algorithm for it repeatedly attempts to match the input data with the output or 

target data. That is, the information is propagated back through the net to 

update the weights and biases, which represents the features/variables of the 

process. This procedure is repeated until the sum-squared error between the 

inputs and the outputs fall beneath some threshold value. The neural networks 

executed in the thesis have been performed in Matlab, of which the manual is a 

good starting point for new users in this field of artificial intelligence. Other 

references include Aldrich (1997), and Cheng and Titterington (1994) who give 

a review of neural networks from a statistical viewpoint. 

As was mentioned earlier, classification trees are on a higher level than any of 

the other classification rules, discussed in chapter 2. This is due to the fact that 

no insight is gained into the contribution each variable has on the separation of 

the k different groups. All the variables are employed to obtain the final rules. 

The same applies to the proposed method of classification via principal curves. 

Unlike the problem of variable selection with the other techniques where it is 

imperative to use the correct number of preferably uncorrelated variables, all the 

variables can be employed with the neural networks to obtain the rules. As a 

consequence, this is an advantage of the proposed technique because the 

intercorrelations among the variables do not present a problem. 
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CHAPTER 4 

CLUSTERING WITH PRINCIPAL CURVES 

In this section the experimental work that has been done on clustering with 

principal curves, is presented. In the fIrst three examples, the proposed 

clustering method is applied to simulated two-dimensional data sets containing 

clusters with some interesting formations. These data sets are not representative 

of any real data, but are merely to obtain an understanding of the performance 

of the principal curve clustering technique. After these three examples, the 

proposed method is applied to two process engineering data sets. 

Example 4.1: 

Two contiguous osculating clusters are present in this data set. Usually single 

link clustering methods fuse groups such as these into one cluster, because of 

their vulnerability to the chaining effect. Therefore, it would be interesting to 

see how the proposed clustering method handles this problem and whether it 

fails, like single link, or if it is able to circumvent this problem. The data set, 

together with the principal curve fItted to it, can be seen in fIgure 4.1. 
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Figure 4.1: Principal curve fitted to the data from example 4.1. 
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Figure 4.2: Differences between the consecutive, ordered principal curve 

scores (example 4.1). 

51 

Stellenbosch University  https://scholar.sun.ac.za



As can be seen in the above figure, the plot of the differences between the 

successive scores will not always be as easily interpretable as was the case with 

the Ruspini data illustrated in chapter 3. In figure 4.2 we see that there are two 

areas where the differences are minimal and in the middle there are two points 

close together. These points indicate the largest differences and both of them 

were used to cluster this data set. Figure 4.3 shows the clustering when the split 

is based on observation number 191. The two areas of minimal difference relate 

to the two inflection points in the principal curve in figure 4.1 , since most of the 

points are projected onto these areas. The three parts of obvious differences in 

figure 4.2 relate to the three fractions where the curve is quite straight, as 

relatively few points project onto these segments. These results can be ascribed 

to the relatively low densities of the points in each of the two triangles, and the 

spurious peaks in figure 4.2 tend to decline as the densities of the clusters 

mcrease. 

N 

-2 -1 o 2 

R(c 1: 50.4 % 

Figure 4.3: Two-dimentional clusters obtained through the principal curve­

method, (example 4.1). 

52 

Stellenbosch University  https://scholar.sun.ac.za



The few points incorrectly clustered in figure 4.3 where the two groups meet, 

can be attributed to the relatively low densities of the points in the triangles. 

Figure 4.4 displays the results obtained by single link hierarchical clustering. 

Complete link failed in its attempt to group this data set, probably because of 

the bias this method has towards spherical clusters. 

N 

~ , 

-2 -1 o 2 

PC I: 5)i~ % VAR 

Figure 4.4: Single link clustering of osculating data (example 4.1). 

Although the single link method clustered the data set very well, it failed 

completely when the densities of the points were increased. The reason for this 

is that the bridge between the clusters became denser, resulting in chaining of 

the clusters - a weakness of the single-link method. 

Example 4.2: 

The next data set has two elongated parallel clusters. It is expected that single 

link will cluster this data set perfectly, since there are no intermediate points 

between the two groups and also as single link is prone to produce long thin 

clusters. Figures 4.5 through 3.8, respectively yield the data set with its fitted 

principal curve, the graph containing the differences of the sequential, ordered 
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curve scores, the clusters obtained via this method and finally the results from 

single linle Average link and complete link are not expected to cluster the data 

successfully, owing to their predisposition to search for spherical clusters. 
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Figure 4.5: Data containing elongated clusters with the fitted principal 

curve (example 4.2). 
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Figure 4.6: Differences of the sequential, ordered curve scores (example 

4.2). 
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The largest differences, which yield the same value in this case, are the first and 

last differences. Usually the first difference is rather large, since the first 

ordered curve score is always zero. As a result, a fairly large difference 

between it and the second ordered score is obtained. Splitting the elongated 

data set at the observations yielding the largest differences between the ordered 

scores, produces three clusters as can be seen in figure 4.7. The cluster 

configurations acquired through this method, as well as the single link 

clustering results can respectively be viewed in the next two diagrams . 
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Figure 4.7: Principal curve-clusters (example 4.2). 

It is evident from this graph that the principal curve method failed in its attempt 

to obtain the actual clusters present in the data set_ 
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Figure 4.8: Clusters acquired via single link clustering (example 4.2). 

Studying figure 4.5, it becomes evident that the scores on the principal curve 

cannot produce the desired results, since the two groups project symmetrically 

onto the curve and, therefore, the observations cannot be distinguished. Since 

the clusters are linearly separable, it is clear that had the points been projected 

onto a curve, orthogonal to the main axes of the clusters, the different groups 

would have been identified. However, this cannot be achieved through the 

principal curve algorithm. Single link, as was expected, identified the clusters 

successfully, whereas complete and average link both failed, giving almost 

similar results as with the principal curve method. 

Example 4.3: 

The last of these two-dimensional data sets is composed of two clusters, with 

the first being a spherical cluster enclosed by an annular second cluster. This 

data set will be difficult to separate by means of a projection technique, such as 
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the principal curve method. Figure 4.9 illustrates the data set with the principal 

curve fitted to it. 

0 

It) 

6 

~ 
0 
6 

It) 

9 

0 

'7 

-1 .0 -0.5 . 0.0 

V<AR. 1 

0.5 1.0 

Figure 4.9: Data containing concentric circular clusters with their fitted 

principal curve (example 4.3). 

The graph of the differences between the successive ordered scores is illustrated 

in figure 4.10. As can be seen, it is difficult to decide where to split the 

observations into different clusters. There are a large number of observations in 

the middle whose respective ordered curve scores do not differ at all (zero), 

thus, according to the methodology they fall within the same cluster. In fact 

these projections are all onto the same point, seeing that their differences are 

zero. At both ends of this area are ordered scores that successively differ to 

some extent as in the first example, indicating that for those areas the clusters 

are too sparse. The divisions were made as indicated in figure 4.10, yielding 

three clusters. The three obtained clusters are shown in figure 4.11 . 
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Figure 4.10: The differences between the consecutive, ordered curve scores 

(example 4.3). 
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Figure 4.11: Obtained clusters via the principal curve-(example 4.3). 
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The block in the centre of figure 4.11 indicates the second cluster, which is the 

area with zero differences between the ordered scores. As mentioned 

previously, if all those observations project onto the same point on the curve, 

only then can the difference between all those ordered scores be zero, thus, 

yielding the block as the second cluster. Figure 4.12 portrays the results 

obtained by means of single link clustering. 
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Figure 4.12: Clustering by means of single link (example 4.3). 

Complete link and average link clustered this data set better than the principal 

curve method, but still not successfully. Single link clustered all of these data 

sets perfectly, whereas the principal curve method only succeeded in clustering 

the first data set. The initiative of this new method is to search for a technique 

to cluster process engineering data in which the linkage methods, in fact most of 

the existing techniques, fail completely. These two-dimensional data sets are 

interesting to use in order to compare the results of known methods with the 

new method, and clearly show some of the limitations of the method. 
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Example 4.4: Industrial Flotation Plant Data 

Froth flotation is a complex process and consequently the plant operators 

usually evaluate the state of the flotation process on the basis of the visual 

appearance of the froth phase. Moolman et al. (1995) has recently automated 

this approach by using a computer vision system that extracts features from 

digitised images of the froth. Clusters found in such data can generally be 

associated with systematic changes in plant operation, which is often the result 

of some external disturbances. 

The data were gathered from digitised images of the froth phase, from which 

five statistical variables were extracted. These five variables were measured on 

297 observations. There appeared to be some outliers, which have been 

eliminated. See appendix 2 for more detail on the detection of these · spurious 

objects. The first variable is inversely proportional to the bubble size. The 

second to fourth variables were indicative also of the bubble size as well as of 

the colour of the froth. The fifth variable related to the stability and mobility of 

the froth. The data were standardised to unit variance prior to any analyses, in 

order to circumvent the problem of non-commensurate features/variables with 

different variances. Figure 4.13 illustrates the principal curve moving through 

the data. 
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Figure 4.13: The principal curve moving through the data as plotted in the 

space of the first two variables (example 4.4). 

Judging by the eye, it appears that there are two regions on the curve that are 

denser than the other areas. The differences between the consecutive, ordered 

principal curve scores are shown in figure 4.14. 
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Figure 4.14: The differences between the consecutive, ordered principal 

curve scores (example 4.4). 

One difference seems to stand out and thus the observations were split 

according to these results . The principal curve moving through the data together 

with the two clusters obtained via this method, are plotted in the space of the 

fIrst two principal components, which can be viewed in fIgure 4.15. It was 

found that the fIrst group contained heavily mineralised froths as opposed to the 

second cluster, which consisted of demineralised froths with small bubbles. The 

fIrst two components collectively account for 93 .9% of the variance in the data. 

Figures 4.16 and 4.17 portray the data clustered by means of the k-medoids 

method and complete link, respectively, again plotted in the space of the fIrst 

two principal components. As can be seen from these figures, the 

corresponding methods did not cluster the data as well as the principal curve 

method. The k-medoids method grouped the data quite well, except for the few 

points on the left side of the top cluster. Complete link clustering failed 

completely. Single link was also unsuccessful in its attempt to cluster this data 

set. 
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Figure 4.15: Clusters obtained via the proposed method together with the 

curve moving through the centre of the data, plotted in the space of the first 

two principal components (example 4.4). 
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Figure 4.16: The clusters obtained through the k-medoids method (example 

4.4). 
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Figure 4.17: Complete link clustering of the flotation data, plotted in the 

space of the first two principal components (example 4.4). The bias of the 

method towards spherical clusters is evident. 

Example 4.5: Multiphase Flow in Pipelines 

This data set contains simulated observations modelling non-intrusive 

measurements on a pipeline_ The three-phase flow of oil, water and gas in 

pipelines has previously been described by Bishop et aL (1997)- The flow in the 

pipe adopts one out of three possible configurations, namely horizontally 

stratified, nested annular or homogeneous mixture flow_ The flow was 

characterised by 1000 observations made on 12 features . The variables were 

highly correlated and in order to remove these intercorrelations, principal 

component analysis was applied to the raw data, which simultaneously reduced 

the essential dimensionality to three. These first three components accounted 

for 79_2% of the total variability of the raw data set As in the previous 

example, the variables were scaled to unit variance and outliers also seemed to 

be present in the data set Once again the reader is referred to appendix 2 for 

information on the detection of these points. Even though the first two 

components accounted for more of the variation in the data (64.2%) than the 
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second and third components (35.2%), the latter two components separated the 

three groups better than the first two components. The reason for this was that 

the nested annular and homogeneous mixture clusters, predominantly loaded 

onto the fIrst two components, which obscured the structure of the horizontally 

stratifIed flow regime. Thus, all results will be plotted in the space of the last 

two newly acquired variables (principal components), except of course for the 

graph of the differences between the successive, ordered scores. This is simply 

done to visualize this particular data set, and is not a prerequisite for the method 

in general. 

Figure 4.18 illustrates the actual groups plotted in the space of the first two 

components, whereafter the same plot in the space of the last two components 

can be viewed in figure 4.19. 
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Figure 4.18: Actual clusters of the three-phase data plotted in the space of 

the first two (principal components). 

It is evident from figure 4.18 that the first two principal components do not 

separate the three actual groups very well. Thus, it is hard to identify the regions 

of each cluster, since all three groups seem to overlap. Comparing this graph 
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with figure 4.19, it becomes clear why it was decided to plot the results in the 

space of the second and third principal component. Although these two 

principal components collectively account for only 35.2% of the total variance 

in the data, the smaller clusters in the data are clearly visible. 
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Figure 4.19: The actual clusters of the three-phase data plotted in the space 

of the 2nd and 3rd principal components. 
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Figure 4.20: The principal curve moving through the data, as seen in the 

space of the 2nd and 3rd principal components. 
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This data set has a much more complex internal structure than the data in the 

previous example. It is not easy to distinguish the clusters by examining the 

projections of the points onto the curve. Figure 4.21 depicts the differences 

between the sequential, ordered curve scores. 
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Figure 4.21: Differences of the sequential, ordered principal curve scores. 

According to the results portrayed in figure 4.21 , there are four clusters of 

which two are rather small. These four clusters can be seen in figure 4.22. 

Firstly, although the method found four clusters in the data set instead of three, 

the results are still good. The two main clusters, namely the homogeneous and 

annular groups, were satisfactorily identified. The horizontally stratified group 

consists of six smaller sub-clusters, of which two were identified, but as two 

different clusters. As seen in figure 4.19 the top small cluster, being one of the 

six sub-clusters forming the horizontally stratified group, appears to overlap the 

annular group. The proposed method correctly separated those overlapping 

points into two different groups, though it was not labelled correctly. The 

intention is to study these results together with plant experts, who would 

hopefully be able to associate some meaningful events concerning these 

clusters. 
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Figure 4.22: The four clusters obtained with the principal curve clustering 

method, plotted in the space of the last two variables. 

Comparing the end results of the methodology with the results obtained from 

some known hierarchical clustering methods, it appears that the proposed 

technique performed better. Figure 4.23 shows the clusters obtained from 

complete link hierarchical clustering. 
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Figure 4.23: Clusters obtained through the complete link clustering 

method. 
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Figure 4.24: Groups acquired by means of divisive cluster analysis. 

Neither divisive clustering nor any of the linkage clustering methods could 

cluster the data set into sensible groups. Thus, hierarchical techniques failed. 

K-means clustering, a partitioning method, achieved marginally better results 

than the hierarchical methods. A drawback of the k-means method is that the 

number of groups has to be specified beforehand by the user. The clusters 

acquired by the k-means method can be seen in figure 4.25. 
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Figure 4.25: Clusters obtained by k-means clustering. 
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In order to compare the results of the different- clustering methods, a 

classification table has been set up for each clustering algorithm. The rows 

correspond to the actual groups of the data set and the columns relate to the 

groups obtained via the different clustering methods. The values on the 

diagonal correspond to the number of correct clustered observations. The first 

table contains the results of the principal curve clustering method. 

Table 4.1: Percentages of the correct classified observations of the 

multiphase-flow data as clustered by the principal curve method. 

Homogeneous 34.8 40.3 

Annular 28.2 40.5 0.0 

Stratified 37.0 19.2 100 
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Only 41.6% of the observations have been correctly grouped. This is due to the 

low number of observations clustered into the stratified group by the proposed 

method. Groups one and four, which can be viewed in figure 4.22, have been 

fused into one group for comparison to the actual stratified group. The next 

table gives the results obtained through complete link clustering. 

Table 4.2: Classification table of multiphase-flow data as clustered by 

complete link. 

Homogeneous 40.9 19.3 53.5 

Annular 36.5 32.2 19.3 

Stratified 22.6 48.5 27.3 

The total percentage of correctly clustered observations for complete link 

clustering is 34.9%. The corresponding results acquired via the divisive 

clustering technique are displayed in table 4.3. 

Table 4.3: Classification table of multiphase-flow data as clustered through 

divisive hierarchical clustering. 

Homogeneous 31.4 42.5 34.9 

Annular 26.6 47.0 20.8 

Stratified 42 10.5 44.3 

Divisive clustering succeeded in clustering 37% of the data points correctly. 
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Table 4.4 displays the classification table of the k-means clustered observations, 

compared to the actual groups. 

Table 4.4: Classification table of multiphase-flow data as clustered with the . 

k-means technique. 
« <AeI1JAL K-MEANS CLUSTERED OBSERVATIONS 

'>\l <' < ~ <:Q<,',< <'< 
, ?}r ROUPS <. < ,: "<,, P';~: ' , .;:\ ~':;< Group 2 Group 3 Group 1 

Homogeneous 49.4 35.8 22.7 

Annular 42.5 38.3 18.2 

Stratified 8.1 25.9 59.1 

K-means clustered this data set the best of all the clustering methods, with a 

50.1 % correct clustering rate. As a review, table 4.5 summarises the different 

clustering methods with the rows relating to the genuine groups and the 

columns corresponding to the four different methods, listing the percentages of 

correctly clustered observations into the three distinct groups. 

Table 4.5: Summary of the correct clustered observations, expressed in 

percentages, of the Principal Curve (PC), Complete Link (CL), Divisive 

(DC) and the K-means (KM) clustering methods. 

Homogeneous 34.8 40.9 31.4 49.4 

Annular 40.5 32.2 47.0 38.3 

Stratified 100 27.3 44.3 59.1 

Total 41.6 34.9 37.0 50.1 

As can be seen from these results, the k-means method gave the best overall 

clustering results of this data set. The hierarchical methods did not cluster the 

data very well (both less than 40% accuracy). The principal curve method did 
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not give as good results as was anticipated. It is important to bear in mind that 

in order to perform k-means clustering, the number of groups has to be specified 

a priori by the user. 

Cluster analysis using principal curves operates differently than the existing 

clustering techniques. It compares to clustering methods such as density 

seeking techniques. As mentioned in chapter 2, these methods appear to be the 

logical approach to identifying groups in a multidimensional data set. The 

method gave the best results for the industrial flotation data. The last data set, 

the multiphase flow data, is in general a difficult data set to cluster. The 

proposed technique clustered satisfactorily, compared to the other methods, 

except for k-means clustering. As mentioned, this technique imposes a structure 

on the data set, instead of searching for natural groups, because the number of 

groups has to be specified prior to the clustering. 

All of the experimental work in this chapter has been done in the statistical 

package S-PLUS version 4.5, the professional. edition for Windows. The 

algorithm used to obtain the principal curves is available in S-PLUS. For more 

information on this algorithm written in S-PLUS, see appendix 3. 

73 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTERS 

CLASSIFICATION WITH PRINCIPAL CURVES 

The focus of this chapter is on the natural extension of clustering, namely 

classification. Once the groups in a data set have been established through 

cluster analysis, the features or characteristics of the different groups can be 

utilised, in order to compare the features of new observations of unknown origin 

by means of the established groups. A new point is allocated or labelled as 

belonging to the group to which it is 'nearest' or, in other words, to the group 

with which it has the most features in common. The proposed classification 

technique employed in this chapter has been described in detail in chapter 3. 

Three case studies are considered in this chapter, of which two were introduced 

in the previous chapter, namely, the industrial flotation plant data and the three­

phase data set. The first example is a simulated data set with two overlapping 

normally distributed groups, which are linearly separable. Therefore, the 

principal curve classification method is compared with the classic two-group 

linear classification rule, as described in section 2.2.1. 

The second and third examples are not linearly separable .thus it does not make 

sense to compare the principal curve classification with a linear classification 

rule. Instead, the proposed classification method is compared with a kemel­

based classifier. ~his_ classifier was implemented through a probabilistic neural 

network, which uses Bayesian classification methods (Specht, 1990a). These 

neural nets use distribution functions to estimate the likelihood of a feature 

vector (an observation) belonging to a particular group. Through the use of 

exemplars, which are input vectors whose group membership is known, these 

nets are trained to represent the distribution functions. 
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For instance, let x = (XI,x2 ... ,xp) be an observation and assume that there are k 

different classes. If j(x) = [Ii (x), hex) ... , /Jc(x)] is the set of probability density 

functions of the different class populations and P = [PI, P2, ... , Pk] is the set of 

prior probabilities of an observation belonging to the different classes, then the 

Bayes classifier compares the k values ptf{x), P2 j(x) ... , Pkj(X). Finally, the 

group having the highest value, are determined. 

In order to implement this decision rule, the probability density functions have 

to be constructed. This is accomplished through Parzen estimation (Parzen, 

1962), a non-parametric method that makes no assumptions regarding the nature 

of the distribution functions. That is, 

(5.1) 

where B = 1/(2;rP/2o- p
). The Parzen estimator is developed from k i training data 

points. The exponential terms (Parzen kernels) are in fact localised multivariate 

Gaussian curves that are added together and smoothed (the B-term). The 

structure of this network is as follows: an input layer and a normalising layer, 

which normalises the observation vector x, so that x'x = 1. These two layers 

consist of just as many nodes as there are variables (p). The data are then 

distributed from the normalising layer to the pattern or exemplar layer, which 

represents the Parzen kernels. After the Parzen layer, a summation layer sums 

the kernels and finally, a competitive output layer identifies the classes. The 

weights, which are associated with the nodes in the output or class layer,· are 

composed of the a priori probabilities, Pi. These probabilities are assumed to be 

equal, unless it is specified otherwise. For more information concerning 

probabilistic neural networks, the reader is referred to Specht (1 990a, 1990b). 
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Example 5.1: Gaussian Data 

In the first example, a two-dimensional data set containing two overlapping 

spherical clusters is considered. The one group is centered at (-1, -1) while the 

other group has a mean (1,1) and both have a standard deviation of 1. A total of 

999 observations were randomly generated, containing objects of both the 

groups. These observations were split up into three sets, namely the training, 

test and validation sets. The training and test sets were used to construct the 

classifier discussed· below. Thus, each of the three sets consisted of 333 

observations. 

The first step of the proposed classification method involves calculating the 

principal curve for each of the two groups. The training sets of both groups 

with their fitted principal curves are portrayed in figure 5.1. As can be seen, the 

option to fit the principal curve with the cirCle as the starting curve, instead of 

the usual first principal component, was employed since the two groups are 

spherical. In practice prior knowledge such as this may not be available, in . .. 

which case the curves can also be initiated by the first principal components, as 

described earlier. However, a circle as the starting curve will produce better 

results than using the first principal component, in cases where the data seem to 

have a spherical distribution. Therefore, examining the distribution of the data 

set is imperative prior to any analyses. 
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Figure 5.1: Two group Gaussian data set with each group's fitted principal 

curve, using the circle as the starting curve. 

For each group, the relation between the observations and their projections onto 

the particular group' s principal curve was acquired by means of a multilayer 

perceptron neural network. The trained networks were thus used to obtain the 

principal curve model for each group. The neural network of the first group 

contained one hidden layer with two log-sigmoidal nodes and a linear output 

layer. After 2000 iterations the sum-squared error (SSE) of the neural network 

reached 0.14. The second group was trained with a neural network including 

one hidden layer of two log-sigmoidal nodes. The SSE of 0.19 was achieved 

after 15 000 epochs. In order to test the generalisation of the trained networks, 

both groups ' test sets were used as input to the respective networks. 

The co-ordinates of each group' s actual principal curve, extracted from the 

group ' s test set, had a strong positive correlation with the co-ordinates of the 

simulated principal curve (obtained by using the test sets as input into the 

trained networks). The correlation coefficients for each group can be viewed in 

table 5.1 
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Table 5.1: The correlation coefficie.nts between each group's actual 

principal curve and simulated principal curve co-ordinates . 

. CORRELATION COEF¥IpENTS . 

0.98 0.87 

Group 2 0.91 0.97 

The next step was usrng the validation set, which represented the ' new 

observations ' of unknown origin, as input for both the groups ' neural nets. This 

was to project the new observations onto every group 's principal curve. Finally, 

the Euclidean distances between each point and their projections onto every 

group's curve were obtained. The group nearest to the new observation, is the 

group to which the point was allocated. A classification table is shown in table 

5.2, which contains the allocations of every observation in the validation set, to 

one of the two groups. The rows of the table correspond to the actual group and 

the columns contain the allocated points, as classified by. means of the principal 

curve classification method. Thus, the entries on the diagonal, running from the 

top left to the bottom right, represent the percentage of correct classifications. 

Table 5.2: Classification table of the Gaussian data set, with the percentage 

of correct classified observations on the diagonal, as obtained through 

principal curve classification. 

Group 1 81.2 2.3 

Group 2 18.8 97.7 

78 

Stellenbosch University  https://scholar.sun.ac.za



The overall percentage of correct classifications was 87.7%. As can be seen in 

figure 5.1, the two clusters are alike, considering their shape and distribution, 

and they overlap considerably. Considering all this, the method performed well. 

Classic two-group linear classification was applied to this data set after testing 

both groups statistically for a similar covariance structure. The training and test 

sets were fused into one set to obtain the classification rule. The validation set 

was classified according to this obtained rule. The results are listed in table 5.3 . 

Table 5.3: Classification table of the Gaussian data set, with the percentage 

of correct classified observations on the diagonal, as obtained through 

linear discriminant analysis. 

Group 2 7.9 91.1 

The overall percentage of correct classification was 91.6%. This method of 

classification performed slightly better than the principal curve method, 

however, the difference was statistically insignificant. The groups are linearly 

separable and the linear classification method, utilising this feature, gave similar 

results as the principal curve method. 

Example 5.2: Multiphase Flow in Pipelines. 

There are three distinct known groups in this data set, which include the 

horizontally stratified (Strat), nested annular (Ann) and the homogeneous 

mixture flow (Hom) regimes. The 12 original variables were used to derive the 
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principal curves for each of the three groups. The 12 variables of the data set 

were standardised to unit variance prior to deriving the principal curves. 

The original data set consisted of 3000 observations of which 30 were labelled 

as outliers and removed accordingly. The resulting data set was split into three 

sets, namely the training set, the test set and the validation set. Each of these 

sets contained 990 observations and 12 variables. The relation between the data 

points and their projections onto the principal curve for the first group, namely 

the annular group, were obtained by a neural network consisting of one hidden 

layer with three tan-sigmoidal nodes and a linear output layer. After 15 000 

iterations this neural net was trained with a sum-squared error (SSE) of 0.64. 

The neural net of the homogeneous group, contaiI?-ed also only one hidden layer 

but with three log-sigmoidal nodes and a linear output layer. After 15 000 

epochs the net trained to a SSE of 0.42. The net representing the last group, 

namely the horizontally stratified group, consisted of one hidden layer with 

tl,rree tan-sigmoidal nodes as well as a linear output layer. The SSE after 15 000 

iterations was 0.23, the best of all three groups. 

The results obtained from a neural network presented with the test set are shown 

in table 5.4. This table lists the correlation coefficients between the co-ordinates 

of each group's actual principal curve and the co-ordinates of the simulated 

principal curve. 
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Table 5.4: The correlation coefficients between the three groups' actual 

principal curve and simulated principal curve co-ordinates. 

ACTUAL' .~ .~', CORRELATION CO:~FFICIENTS "!' . ~. 

I· ,. ~: '-.' .s· '·:.1 )~: . ... " .' . .... , 

.~~~M~:,; VI V2 V3 'V4 V5 V6 

Hom 0.97 0.94 0.97 0.94 0.97 0.94 

Ann 0.96 0.96 0.95 0.94 0.96 0.93 

Strat 0.99 0.98 0.99 0.98 0.99 0.98 
l' 

V7 V8 V9 VI0 VB V12 

Hom 0.97 0.94 0.97 0.94 0.97 0.93 

Aiin 0.95 0.94 0.95 0.94 0.95 0.94 
. ""'" Strat 0.99 0.99 0.99 0.98 0.84 0.96 

Table 5.4 indicates that there were very strong positive correlations between the 

co-ordinates of the simulated curves and actual curves' co-ordinates, for all 

three groups. This denotes that the neural networks generalised satisfactorily. 

Finally, classifying the observations in the validation set into one of these three 

groups, on the basis of the shortest Euclidean distance between a point and its 

projected values onto both the curves, yields the results summarised in table 5.5. 

Table 5.5: Classification table of the multiphase flow data set, containing 

percentages of correct classified observations on the diagonal, as obtained 

through principal curve classification. 

Homogeneous 93.7 

Annular 4.6 99.7 o 
Stratified 1.7 o 100 
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The overall percentage of correct classification of the observations m the 

validation set, performed by the proposed method, was 97.7%. 

The probabilistic neural network was trained usmg 900 observations, after 

which the remaining 100 observations were classified as belonging to one of the 

three groups. The exemplar layer consisted of 100 nodes and the output layer of 

the actual three groups. The classification table obtained by using the 

probabilistic neural network to classify the 100 'new' observations can be seen 

in table 5.6. 

Table 5.6: Classification table of the multiphase flow data set, containing 

percentages of correct classified observations on the diagonal, as obtained 

by the probabilistic neural network. 

Homogeneous. 100 

Annular 0.0 94.12 0.0 

Stratified 0.0 0.0 100 

On average, the probabilistic neural net thus classified 98.04% of the 'new' 

observations correctly. This is approximately similar to the results obtained by 

the principal curve method. 

Example 5.3: Industrial Flotation Plant Data 

The two groups, as established in chapter 4, are the groups known a priori in 

this example. That is, group 1 consisted of heavily mineralised froths whereas 

group 2 was composed of demineralised froths with small bubbles. As in the 

previous case studies, the data set was split up into the training, test and 

validation sets. Each set consisted of five features and 95 observations. Each of 
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these sets was standardised to unit variance in order to eliminate the possible 

domination of variables with larger variances. The principal curve, for each of 

the two groups present in the training sample, was extracted. Figure 5.2 shows 

the two groups, as well as their respective curves, plotted in the space of the first 

two variables. 

-3 

o Group I 

" Group 2 

-2 -1 

Variable I 

o 

o 

o 2 

Figure 5.2: Two known groups in the data set with their respective fitted 

principal curves. 

The neural networks for both groups were obtained by using each cluster's data 

points, and their projections onto the group ' s corresponding curve, as the inputs 

and targets respectively. Group 1 was trained with a neural net containing one 

hidden layer with two tan-sigmoidal nodes. After 2832 epochs the network' s 

SSE reached 0.02. The second group was trained on a network with a single 

hidden layer containing two tan-sigmoidal nodes. Both groups' networks had a 

linear output layer. After 10 000 iterations the SSE was 0.017. Table 5.7 

indicates how well the networks generalised. 

83 

Stellenbosch University  https://scholar.sun.ac.za



Table 5.7: The correlation coefficients between each group's actual 

principal curve and simulated principal curve co-ordinates. 

Group 1 0.88 0.98 0.99 0.98 

Group 2 0.99 0.98 0.83 0.89 0.93 

Table 5.8 gives the classification table, which was obtained after the validation 

set was fed into both the neural networks. The two networks represented the 

two groups. Each point in the validation set was classified as belonging to that 

group, for which the point's projection onto the particular group 's principal 

curve delivered the shortest Euclidean distance. 

Table 5.8: Classification table of the industrial flotation plant data set, 

containing percentages of correct . classifications on the diagona., as 

obtained through principal curve classification. 

Group 2 96.9 

The observations in the validation data set were 98 .9% correctly classified by 

the proposed classification method. Similar results were obtained by classifying 

the observations in the validation set by means of a probabilistic neural network. 

Good results were obtained via the principal curve classification method. It 

compares to the known linear classification method, as well as to classification 

with a probabilistic neural network. An advantage of the principal curve 

classification method is that a data set of any distribution can be classified. 

Classification with some known statistical methods requires prior analyses, such 
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as testing for similar covariance structures. Different statistical classification 

rules are used depending on the outcome of the test for similar covariance 

structures. 

The principal curve classification method can be used in conjunction with the 

principal curve clustering method. The clusters identified through the latter 

technique can be used as the groups known a priori in classification with 

principal curves. 

The analysis of the data in this chapter, as in chapter 3, was done in S-PLUS, 

except for the neural networks. The Neural Network Toolbox of MAT LAB 

version 4.2c for Windows was used for this purpose. 
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CHAPTER 6 

CONCLUSIONS 

Methods based on the use of principal curves for clustering and classification of 

particularly process engineering data are proposed in this study. Both these 

techniques are based on a one-dimensional representation of the data. This 

representation is obtained through a technique known as principal curves, 

developed by Hastie and Stuetzle (1989). Principal curves are said to move 

through the middle of the data cloud. 

Cluster analysis by means of principal curves, employs the increasingly ordered 

principal curve scores of the observations. When the values of the successive 

ordered scores do not differ significantly, the scores will appear to be compact 

or close together. The observations corresponding to these dense points are 

grouped to form the clusters. Results obtained from this clustering method were 

compared to results of some of the well-known clustering techniques such as k­

means clustering, the hierarchical linkage methods, as well as divisive 

hierarchical techniques. 

This clustering technique is in some sense similar to density seeking techniques. 

However, the proposed method considers the distribution of the differences 

between the successive scores, unlike the density seeking methods, which 

concentrates on the density distribution of the scores. 

Drawbacks of the proposed method include the interpretation of the distribution 

of the ordered principal curve scores, furthermore, small data sets present a 

problem since the densities of points within clusters may be comparable to the 

densities of points between clusters. In cases where the clusters in a data set 

tend to be aligned with the general direction of the principal curve, or when data 
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sets contain complicated cluster configurations such as enclosed groups, the 

method failed in its attempt to identify the clusters. 

It is known that most of the established clustering algorithms cannot cluster 

engineering data sets, since they were developed to cluster qualitative data. 

These techniques also have a computational drawback, since they employ the 

entire data set in the actual computation. Engineering data are of a quantitative 

nature and are usually highly dimensional. Needless to say, the well-known 

algorithms, especially hierarchical techniques, struggled to cluster such data and 

the results obtained through these methods are not reliable. The dimensionality 

of a data set is not an obstacle for the principal curve method, as the dimension 

is reduced. Consequently, the principal curve method yielded mainly superior 

results compared to the other methods, and results comparable to the 

partitioning method k-means. The proposed method has the advantage over the 

k-means method in so far as the number of groups need not be specified prior to 

the analyses. 

Owing to the fact that the principal curve method reduces the dimensionality of 

the data to one, much less computer memory is required and the actual 

computation is quite faster than that of the standard methods. As a result, much 

larger data sets can be handled than with the other techniques. 

The second aspect of this study is classification by use of principal curves. The 

relation between each group's data points and their projections onto the group's 

principal curve is determined by means of a back propagation neural network. 

The actual classification of the observations of unknown origin involves the 

projection of every 'new' data point onto each known group's principal curve. 

The group for which the new point is closest, in Euclidean space, to its 

projection onto the corresponding curve, is labelled as the class to which the 

new observation belongs. 

Neither the proposed classification method nor the other techniques to which the 

principal curve method was compared, yielded superior results. A very high 
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correctly classified percentage rate of the unidentified observations was 

acquired through all the different classification methods. 

Unlike some of the standard statistical classification analyses, such as linear 

discriminant analysis, the proposed classification procedure does not need any 

assumptions regarding the data set. Regardless of the distribution of the data set 

or the number of classes present, the method is applied without any difficulty. 

The usual statistical classification procedures are applicable to two groups and 

need to be extended in the case where the data set has more than two groups. 

The principal curve method does not need to be adjusted in certain situations, 

for the same procedure is followed each time. An important issue in statistical 

classification is the equality of the different groups' covariance structures, 

which is unnecessary to test prior to the execution of the principal curve 

classification procedure. 

Clusters that tend to overlap may lead to the incorrect classification of the 

observations. In such cases better r~sults may be acquired through the linear 

separation of such groups. Analogous to classification trees, the principal curve 

classification method does not produce any information regarding the 

contribution each variable has in the separation of the groups. In some cases not 

all the variables are needed in the separation of the groups and may, therefore, 

be discarded. Consequently, since the principal curve method does not posses 

this aspect, it may have an economical impact, financially and time-wise, since 

the collection and measurement of these superfluous variables are not required. 
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Appendix 1: Estimates of Error Rates 

This annotation describes various ways of the estimation of error rates, as 

mentioned in chapter I, which does not assume normality but may be applied in 

any situation. 

The apparent error rate uses a method known as resubstitution. This method 

entails that the training samples, used to acquire the classification rule, be re­

used for classification in order to estimate the error rate. Owing to this, the 

estimator is over optimistic for small samples whereas for larger samples the 

amount of bias is rather small. 

Leave-one-out is a method quite similar to the jackknife method proposed by 

Quenouille (1956) as a general technique to reduce bias in an estimator. For a 

one-step jackknife, this technique is as follows. Suppose Xl, .. . ,xn is a random 

sample and let the estimator of a parameter e, be denoted by Tn = Tn(xJ, ... ,xn). 

The n statistics Tn{i) ,i = 1, ... ,n are computed in order to "jackknife" Tn, where 

T/i) is calculated just as Tn except for Xi being omitted from the sample. The 

jackknife estimator of e is denoted by 

(Al.I) 

The jackknife estimator JK(Tn) will in fact have a smaller bias than Tn. See 
.... ~-

Miller (1974) for a review on the properties of the jackknife. In the situation of 

classification, the application of this method is that each observation is deleted 

in tum, with the classification rule being computed from the remaining 

observations. The observation left out is then classified- with the obtained rule. 

The number of misclassified observations is counted, which results in an almost 

unbiased estimate, however it has a large variance and mean square error. 
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The bootstrap method is another technique, such as cluster analysis, where the 

application became feasible because of the availability of ever stronger growing 

computing systems. An illustration of how this method works is as follows: Let . 

x = (Xl, ... ,xn) denote n independent observations and let sex) be a statistic of 

interest computed from the n observations. Suppose the statistic of interest is 

the mean. It is known that the estimated standard error of the mean 

x = 2:;=1 Xi In is given by the equation 

(Al.2) 

where i = 2: (Xi - xY /(n -1). The bootstrap estimate of the standard error 

is acquired by first obtaining the bootstrap samples, x*b = ~; , ... ,x:), with b = 

1, ... , B. A bootstrap sample is obtained by sampling randomly n times from the 

original data set x = (Xl, ... ,xn), with replacement. For each bootstrap sample a 

corresponding bootstrap replication of the statistic s, namely s(x*b), is 

calculated. The bootstrap estimate of the standard error is the standard 

deviation of the bootstrap replications, that is 

1 

Sboot ~ {t. [s(X'b
)- sOl'/(B -If (Al.3) 

where sO = L:1S{X*b)/ B. According to Efron (1993), assuming that sex) is the 

I 

mean x, as n approaches infinity (AT.3) approaches {L ~=I (x i - xf In 2 } 2" • 

The calculation of the bootstrap process for estimating the standard error of the 

statistic sex) is depicted in figure Al.l. In comparison to the other error rate 

estimators, this method consists of the best features of the two preceding 

estimators, namely it has a small variance and is almost unbiased. A huge 

drawback is that this technique is rather time-consuming in that the number of 
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classification rules must equal the number of replicates. The bootstrap is also 

unable to handle large biases. 

i 
~Xn:) 

Bootstrap 
........... replications ...... . 

........ . ••......... 
......... . ..... . 

/ , 
........... .. .•.. 

... . •....... 

~ 

i 
~ ............................ ..... . .......... ......................................... ~----, 

...................................................... " 
. .... ................................ ............ 

...................... .. .................. Bootstrap 

1>// Samples 

Cx~~;> 

......... · ................. ··1 Data set 

Figure A1.I: Schematic illustration of the bootstrap process. 
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Cross-validation is another method used to estimate the error rate. When the 

training sample is rather large it is split into two equal parts, where the one part 

is used to compute the rule, the second part is classified with the rule obtained 

from the first part. Otherwise, for smaller sets "k-fold" cross-validation is used, 

which entails the following: The sample is split into k parts. One part is omitted 

from the calculation of the classification rule from the remaining k - 1 parts, the 

k-th part is classified and the error rate is detennined. This procedure is repeated 

k times, omitting each part in turn, and finally the k error rates are averaged. 

Usually k is set equal to n, then consequently the cross-validation error rate 

estimation is similar to the leave-one-out method Gackknife). The cross­

validation method appears to be similar to the jackknife, because of the 

observations being omitted in turn, however no apparent parameter is being 

jackknifed and consequently there are no deeper relation between the two 

methods (Efron, 1982). 

In the principal curve algorithm, cross-validation was also used to detennine the 

spans for each of the p co-ordinate functions. For each i = 1, ... ,n, the point Xi is 

predicted by means of a smoother applied to the sample, excluding the ith 

observation. Let X(i) be this predicted value. The cross-validated residual sum 

of squares is defined by 

CVRSS = :t(xi -X(i))2 (AlA) 
i=1 

CVRSSln is approximately an unbiased estimator of the expected squared 

prediction error. When the span used in the smoother is too large, the curve will 

not capture the essential features in the data, resulting in a large CVRSS for the 

bias component will dominate. Conversely, when too small a span is picked the 

curve will follow the data very closely, including the noise in the data, again 

yielding a large CVRSS because the variance component increases. The span 

chosen is that value which yields the smallest CVRSS. Having a large enough 

training sample results in an unbiased estimate, however the mean square error 

tends to be rather large as in the case of the jackknife. 
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Another method, which differs from the rest, is one where the sample is split 

into two parts, the one being the training sample and the other is named the 

validation sample. The classification rule is computed from the former sample 

and then evaluated with the validation sample. This results in an unbiased error 

rate. If the sample size is small this procedure is not recommended. Keep in 

mind, that this rule is not the classification rule that will be used in practice. 

Preferably, the whole data set is used to construct the classification rule, in order 

to minimise the error rate's variance. This method occupies only half of the 

data set and the obtained error rate can vary significantly compared to the whole 

set used to construct the rule. 
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Appendix 2: Outliers 

In chapter 4, page 60 it was mentioned that prior to any analysis, the data were 

screened for outliers. When suspect observations were detected they were 

eliminated. Some researchers do not believe in rejecting dubious observations, 

but rather to down-weight them (Venables and Ripley, 1997). Still, 

observations that are completely wrong can be eliminated. Only such 

observations were deleted since data that are "too clean" underestimate the 

variance. It is widely known in which way these spurious observations affect 

results, thus, it is always important to screen the data for outliers and not to 

assume that the data set does not contain any of these observations. 

More attention has been paid to the detection of univariate outliers than to their 

multivariate counterparts. There are various ways to seek for multivariate 

outliers, of which no method is optimal. Even though a two or three­

dimensional scatter diagram of all possible combinations of the p variables can 

be considered as the most elementary method, this diagram may reveal 

observations on the edge of the swarm of points which are distinctly separate 

from the other observations (Barnett and Lewis, 1994). 

This method may not expose all possible outliers, therefore, the change of the 
I 

co-ordinate basis, or in other words the rotation of the axes, may assist in 

disclosing dubious observations not observed previously. Another use of 

principal components is illustrated in this regard. By plotting the data in the 

space of the first and last few principal components respectively, different kinds 

of outliers can be pointed out. See figure A2.1 for an example of outlying 

observations in the space of the first two principal components. According to . 

Gnanadesikan and Kettering (1972), outliers that inflate variances or 

covariances can be highlighted by the first few principal components, whereas 

the last few components are responsive towards outliers adding spurious 

dimensions to the data. 
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Figure A2.1: Projections of data onto the first two principal components to 

search for outliers. 

It is evident in figure A2.1 that observations 12 and 88 are separated from the 

swarm of points, thus they can be distinguished as extremes. The individual 

principal component scores Zj, can be used in univariate outlier tests or be 

plotted against plotting positions, such as the normal probability plot. These 

plotting positions are only useful when assumptions can be made regarding the 

distribution of the original data set, otherwise they are useless. However, if p is 

fairly large it leads to the Zi being samples from approximately normal 

distributions, because of the linear transformations of the data with principal 

component analysis. In this case, observations that lie off the linear relationship 

of the normal probability plot are indicative of outliers. 

Another method to search for outliers is to compute the Mahalanobis distances 

between all the observations, as in equation (1.2). As proposed by Johnson and 

Wichern (1998), producing a Chi-square plot (with p degrees of freedom) of the 

ordered distances will also reveal outliers. The observations furthest from the 

origin and also deviating from the straight line can be labelled as outliers. An 
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example of this can be seen in figure A2.2. Outliers can also be indicated by 

comparing the distances with the critical value Xp.O.05. Those distances that 

exceed this critical value are also suspicious observations. 

N 

o 5 1Q 

Chi-Square Quantiles 

00 
00 

000 

15 

o 

Figure A2.2: Chi-square plot of ordered Mahalanobis distances. 

20 

The top observation in figure A2.2 deviates from the fitted line and lies further 

apart than the other observations. The Mahalanobis distance can be compared 

to a more conservative critical value, namely the interquartile range (IQR), 

which is computed by subtracting the first quartile from the third quartile. This 

is a measure of dispersion of the data set and the decision is to label an 

observation whose corresponding Mahalanobis distance di > 1.5·IQR. 

These two methods employing the Mahalanobis distances are some of the 

methods, which transfonn multidimensional data to one-dimensional data, 

whereafter univariate methods can be applied to search for outliers. 
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As stated earlier, there is no superior method in the search for outliers, it is a 

trade-off between all of these methods. Observations that tend to show up as 

outliers in most of these techniques can be dealt with accordingly. 
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Appendix 3: Software 

The algorithm for principal curves is not included in this version of S-PLUS, 

however, it is available on the World Wide Web at the addresses: 

http://lib.stat.cmu.eduiS/ 

http://www.hensa.ac. uk/ftp/mirrors/ statlib/ 

The principal curve function call is as follows: 

principal.curve(x, start, thresh, plot.true, maxit, stretch, smoother, trace, ... ) 

The required arguments are: 

x a matrix of points in arbitrary dimension 

start either a previously fit principal curve, or else a matrix of points that in 

row order define a starting curve. If missing, then the first principal 

component is used. If the smoother is "periodic.lowess", then a circle 

is used as the start. 

thresh convergence threshold on shortest distances to the curve; default is 

0.001. 

plot.true If TRUE the iterations are plotted. 

maxit maximum number of iterations; default is 10. 

stretch a factor by which the curve can be extrapolated when points are 

projected. Default is 2 (times the last segment length). The default is 

o for smoother = "periodic.lowess" 

smoother choice of smoother. The default is "smooth. spline" and other choices 

are "lowess" and "periodic.lowess". The latter allows one to fit 

closed curves. Beware, you may want to use 'iter = 0' with 10wessO. 

trace If TRUE, the iteration information is printed 

additional arguments to the smoothers 
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The value obtained through the algorithm includes: 

An object of class "principal.curve" is returned, that describes a smooth curve 

passing through the middle of the data x in an orthogonal sense. This curve is a 

nonparametric generalisation of a linear principal component. If a closed curve 

is fit (using 'smoother = "periodic.lowess"') then the starting curve defaults to a 

circle, and each fit is followed by a bias correction suggested by J~Banfield. It 

has components: 

s 

tag 

lambda 

a matrix corresponding to x, giving their projections onto the curve. 

an index, such that s[tag,] is smooth. 

for each point, its arc-length from the beginning of the curve. The 

curve is parameterised approximately by arc-length, and hence is 

unit-speed. 

dist the sum-of-squared distances from the points to their projections. 

The clustering algorithms used in this thesis are all included in the S-PLUS 

package. 

1. The k-means clustering function call is as follows: 

kmeans(x, centers, iter.max=10) 

The required arguments are: 

x matrix of multivariate data. Each row corresponds to an observation, 

and each column corresponds to a variable. Missing values are not 

accepted. 

centers matrix of initial guesses for the cluster centers, or integer giving the 

number of clusters. If centers is an integer, hclust and cutree will be 

used to get initial values. If centers is a matrix, each row represents a 

cluster center, and thus centers must have the same number of 
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columns as x. The number of rows in centers, (there must be at least 

two), is the number of clusters that will be formed. Missing values are 

not accepted. 

The argument that is not obligatory is: 

iter. max maximum number of iterations. 

The value returned by the algorithm is an object of class kmeans with the 

following components: 

cluster vector of integers, ranging from 1 to nrow(centers), with length the 

same as the number of rows of x. The ith value indicates the cluster in 

which the ith data point belongs. 

center matrix like the input centers containing the locations of the final 

cluster centers. Each row is a cluster center location. 

withinss vector of length nrow(centers). The ith value gives the within cluster 

sum of squares for the ith cluster. 

size vector of length nrow(centers). The ith value gives the number of data 

points in cluster i. 

2. The hierarchical clustering function call is: 

hclust(dist, method = "compact", sim =) 

The only required arguments~ are exactly one of dist orsim. The rest of the 

arguments are optional, which include: 

dist a distance structure or distance matrix. Normally this will be the 

result of the function dist, but it can be any data of the form returned 

by dist, or a full, symmetric matrix. Missing values are not allowed; 

method character string giving the clustering method. The three methods 

currently implemented are "average" (average link), "connected" 
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(single linkage) and "compact" (complete linkage). The first three 

characters of the method are sufficient. 

sim structure giving similarities rather than distances. This can either be a 

symmetric matrix or a vector with a "Size" attribute. Missing values 

are not allowed. 

The returned value of the function includes: 

Firstly, a "tree" representing the clustering, i.e., a list consisting of the following 

components: 

merge an (n-l) by 2 matrix, if there were n objects in the original data. Row 

i of merge describes the merging of clusters at step i of the clustering. 

If an element j in the row is negative, then object -j was merged at 

this stage. If j is positive, then the merge was with the cluster formed 

at the (earlier) stage j of the algorithm. 

height 

order 

a vector of the clustering "height"; i.e., the distance between merged 

clusters at the consecutive stages. 

a vector giving a permutation of the original objects suitable for 

plotting, in the sense that a cluster plot using this ordering will not 

contain crossings of the branches. 
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