119 research outputs found

    Balanced electron-hole transport in spin-orbit semimetal SrIrO3 heterostructures

    Get PDF
    Relating the band structure of correlated semimetals to their transport properties is a complex and often open issue. The partial occupation of numerous electron and hole bands can result in properties that are seemingly in contrast with one another, complicating the extraction of the transport coefficients of different bands. The 5d oxide SrIrO3 hosts parabolic bands of heavy holes and light electrons in gapped Dirac cones due to the interplay between electron-electron interactions and spin-orbit coupling. We present a multifold approach relying on different experimental techniques and theoretical calculations to disentangle its complex electronic properties. By combining magnetotransport and thermoelectric measurements in a field-effect geometry with first-principles calculations, we quantitatively determine the transport coefficients of different conduction channels. Despite their different dispersion relationships, electrons and holes are found to have strikingly similar transport coefficients, yielding a holelike response under field-effect and thermoelectric measurements and a linear, electronlike Hall effect up to 33 T.Comment: 5 pages, 4 figure

    Inverse Proximity Effects at Spin-Triplet Superconductor-Ferromagnet Interface

    Full text link
    We investigate inverse proximity effects in a spin-triplet superconductor (TSC) interfaced with a ferromagnet (FM), assuming different types of magnetic profiles and chiral or helical pairings. The region of the coexistence of spin-triplet superconductivity and magnetism is significantly influenced by the orientation and spatial extension of the magnetization with respect to the spin configuration of the Cooper pairs, resulting into clearcut anisotropy signatures. A characteristic mark of the inverse proximity effect arises in the induced spin-polarization at the TSC interface. This is unexpectedly stronger when the magnetic proximity is weaker, thus unveiling immediate detection signatures for spin-triplet pairs. We show that an anomalous magnetic proximity can occur at the interface between the itinerant ferromagnet, SrRuO3_3, and the unconventional superconductor Sr2_2RuO4_4. Such scenario indicates the potential to design characteristic inverse proximity effects in experimentally available SrRuO3_3-Sr2_2RuO4_4 heterostructures and to assess the occurrence of spin-triplet pairs in the highly debated superconducting phase of Sr2_2RuO4_4.Comment: 11 pages, 6 figure

    Coupling charge and topological reconstructions at polar oxide interfaces

    Full text link
    In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion-symmetry across the heterointerfaces. A notable example is the interface between polar and non-polar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way to the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wavefunctions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO3_3, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and LaAlO3_3, a polar wide-bandgap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO2_2/SrO interface configuration, leading to excess charge being pinned near the LaAlO3_3/SrRuO3_3 interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction modifies the momentum-space Berry curvature in SrRuO3_3, driving a reorganization of the topological charges in the band structure. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.Comment: 5 pages main text (4 figures), 29 pages of supplementary informatio

    Topologically-Driven Linear Magnetoresistance in Helimagnetic FeP

    Get PDF
    The helimagnet FeP is part of a family of binary pnictide materials with the MnP-type structure which share a nonsymmorphic crystal symmetry that preserves generic band structure characteristics through changes in elemental composition. It shows many similarities, including in its magnetic order, to isostructural CrAs and MnP, two compounds that are driven to superconductivity under applied pressure. Here we present a series of high magnetic field experiments on high quality single crystals of FeP, showing that the resistance not only increases without saturation by up to several hundred times its zero field value by 35 T, but that it also exhibits an anomalously linear field dependence over the entire field range when the field is aligned precisely along the crystallographic c-axis. A close comparison of quantum oscillation frequencies to electronic structure calculations links this orientation to a semi-Dirac point in the band structure which disperses linearly in a single direction in the plane perpendicular to field, a symmetry-protected feature of this entire material family. We show that the two striking features of MR-large amplitude and linear field dependence-arise separately in this system, with the latter likely due to a combination of ordered magnetism and topological band structure.Comment: 10 pages, 6 figure

    Scale-Free model for governing universe dynamics

    Full text link
    We investigate the effects of scale-free model on cosmology, providing, in this way, a statistical background in the framework of general relativity. In order to discuss properties and time evolution of some relevant universe dynamical parameters (cosmographic parameters), such as H(t)H(t) (Hubble parameter), q(t)q(t) (deceleration parameter), j(t)j(t) (jerk parameter) and s(t)s(t) (snap parameter), which are well re-defined in the framework of scale-free model, we analyze a comparison between WMAP data. Hence the basic purpose of the work is to consider this statistical interpretation of mass distribution of universe, in order to have a mass density ρ\rho dynamics, not inferred from Friedmann equations, via scale factor a(t)a(t). This model, indeed, has been used also to explain a possible origin and a viable explanation of cosmological constant, which assumes a statistical interpretation without the presence of extended theories of gravity; hence the problem of dark energy could be revisited in the context of a classical probability distribution of mass, which is, in particular, for the scale-free model, P(k)kγP(k)\sim k^{-\gamma}, with 2<γ<32<\gamma<3. The Λ\LambdaCDM model becomes, with these considerations, a consequence of the particular statistics together with the use of general relativity.Comment: 7 pages, 4 figure

    Electronic Band Structure Changes across the Antiferromagnetic Phase Transition of Exfoliated MnPS3 Flakes Probed by μ-ARPES

    Get PDF
    Exfoliated magnetic 2D materials enable versatile tuning of magnetization, e.g., by gating or providing proximity-induced exchange interaction. However, their electronic band structure after exfoliation has not been probed, presumably due to their photochemical sensitivity. Here, we provide micrometer-scale angle-resolved photoelectron spectroscopy of the exfoliated intralayer antiferromagnet MnPS3 above and below the Néel temperature down to one monolayer. Favorable comparison with density functional theory calculations enables identifying the orbital character of the observed bands. Consistently, we find pronounced changes across the Néel temperature for bands consisting of Mn 3d and 3p levels of adjacent S atoms. The deduced orbital mixture indicates that the superexchange is relevant for the magnetic interaction. There are only minor changes between monolayer and thicker films, demonstrating the predominant 2D character of MnPS3. The novel access is transferable to other MPX3 materials (M: transition metal, P: phosphorus, X: chalcogenide), providing several antiferromagnetic arrangements

    Exchange interactions of CaMnO3 in the bulk and at the surface

    Full text link
    We present electronic and magnetic properties of CaMnO3 (CMO) as obtained from ab initio calculations. We identify the preferable magnetic order by means of density functional theory plus Hubbard U calculations and extract the effective exchange parameters (Jij's) using the magnetic force theorem. We find that the effects of geometrical relaxation at the surface as well as the change of crystal field are very strong and are able to influence the lower-energy magnetic configuration. In particular, our analysis reveals that the exchange interaction between the Mn atoms belonging to the surface and the subsurface layers is very sensitive to the structural changes. An earlier study [A. Filippetti and W. E. Pickett, Phys. Rev. Lett. 83, 4184 (1999)PRLTAO0031-900710.1103/PhysRevLett.83.4184] suggested that this coupling is ferromagnetic and gives rise to the spin-flip (SF) process on the surface of CMO. In our work, we confirm their finding for an unrelaxed geometry, but once the structural relaxations are taken into account, this exchange coupling changes its sign. Thus, we suggest that the surface of CMO should have the same G-type antiferromagnetic order as in the bulk. Finally, we show that the suggested SF can be induced in the system by introducing an excess of electrons. © 2017 American Physical Society
    corecore