324 research outputs found

    Wave-particle interactions in the outer radiation belts

    Get PDF
    Data from the Van Allen Probes have provided the first extensive evidence of non-linear (as opposed to quasi-linear) wave-particle interactions in space with the associated rapid (fraction of a bounce period) electron acceleration to hundreds of keV by Landau resonance in the parallel electric fields of time domain structures (TDS) and very oblique chorus waves. The experimental evidence, simulations, and theories of these processes are discussed. {\bf Key words:} the radiation belts, wave-particle interaction, plasma waves and instabilitiesComment: 9 pages, 2 figure

    Quantum electrodynamics of heavy ions and atoms

    Get PDF
    The present status of quantum electrodynamics (QED) theory of heavy few-electron ions is reviewed. The theoretical results are compared with available experimental data. A special attention is focused on tests of QED at strong fields and on determination of the fundamental constants. A recent progress on calculations of the QED corrections to the parity nonconserving 6s-7s transition amplitude in neutral Cs is also discussed.Comment: Talk at ICAP 2006, Innsbruck, Austri

    Young-type interference in projectile-electron loss in energetic ion-molecule collisions

    Get PDF
    Under certain conditions an electron bound in a fast projectile-ion, colliding with a molecule, interacts mainly with the nuclei and inner shell electrons of atoms forming the molecule. Due to their compact localization in space and distinct separation from each other these molecular centers play in such collisions a role similar to that of optical slits in light scattering leading to pronounced interference in the spectra of the electron emitted from the projectile.Comment: 4 pages, 3 figure

    Acceleration of radiation belts electrons by oblique chorus waves

    Get PDF
    International audience[1] The redistribution of energy during the recovery phase of geomagnetic storms related to the acceleration of electrons in the Earth's outer radiation belt by cyclotron-resonant chorus waves is an important and challenging topic of magnetospheric plasma physics. An approximate analytical formulation of energy diffusion coefficients is derived in this paper, on the basis of a quasi-linear formalism valid for large enough bandwidths or for successive random scatter by uncorrelated waves of different frequencies and moderate average amplitudes. We make use of chorus wave parameterizations derived from CLUSTER measurements to show that oblique whistler waves can significantly increase the energy diffusion rate of small pitch angle electrons on the dayside. On the other hand, the energization rate of the more numerous high pitch angle electrons is typically reduced by a factor of 2 on the dayside, while it remains nearly unchanged on the nightside where high-intensity waves are less oblique. Besides, lifetimes are strongly reduced on the dayside, which could also impact the long-term time-integrated acceleration rates of injected electrons. Comparison between the analytical formulas and full numerical results demonstrates a good agreement and provides new scaling laws as a function of whistler mean frequency, plasma density and particle energy. It is also suggested that the enhancement of energy diffusion of low energy electrons (<100 keV) at small pitch angles with oblique waves could result in an intensification of wave growth at latitudes higher than 15. This might contribute to explain high chorus intensities measured by CLUSTER on the dayside at high latitudes. Citation: Mourenas, D., A. Artemyev, O. Agapitov, and V. Krasnoselskikh (2012), Acceleration of radiation belts electrons by oblique chorus waves

    Nuclear recoil effect on the magnetic-dipole decay rates of atomic levels

    Full text link
    The effect of finite nuclear mass on the magnetic-dipole transition probabilities between fine-structure levels of the same term is investigated. Based on a rigorous QED approach a nonrelativistic formula for the recoil correction to first order in m_e/M is derived. Numerical results for transitions of experimental interest are presented.Comment: 9 page

    QED calculation of the 2p1/2-2s and 2p3/2-2s transition energies and the ground-state hyperfine splitting in lithiumlike scandium

    Full text link
    We present the most accurate up-to-date theoretical values of the {2p_{1/2}}-{2s} and {2p_{3/2}}-{2s} transition energies and the ground-state hyperfine splitting in Sc18+{\rm Sc}^{18+}. All two- and three-electron contributions to the energy values up to the two-photon level are treated in the framework of bound-state QED without \aZ-expansion. The interelectronic interaction beyond the two-photon level is taken into account by means of the large-scale configuration-interaction Dirac-Fock-Sturm (CI-DFS) method. The relativistic recoil correction is calculated with many-electron wave functions in order to take into account the electron-correlation effect. The accuracy of the transition energy values is improved by a factor of five compared to the previous calculations. The CI-DFS calculation of interelectronic-interaction effects and the evaluation of the QED correction in an effective screening potential provide significant improvement for the 2s2s hyperfine splitting. The results obtained are in a good agreement with recently published experimental data.Comment: 10 pages, 2 table

    Equatorial electron loss by double resonance with oblique and parallel intense chorus waves

    Get PDF
    International audiencePuzzling satellite observations of butterfly pitch angle distributions and rapid dropouts of 30–150 keV electrons are widespread in the Earth’s radiation belts. Several mechanisms have been proposed to explain these observations, such as enhanced outward radial diffusion combined withmagnetopause shadowing or scattering by intense magnetosonic waves, but their effectiveness is mainly limited to storm times. Moreover, the scattering of 30–150 keV electrons via cyclotron resonance with intense parallel chorus waves should be limited to particles with equatorial pitch angle smaller than 70∘–75∘, leaving unaffected a large portion of the population. In this paper, we investigate the possible effects of oblique whistler mode waves, noting, in particular, that Landau resonance with very oblique waves can occur up to ∼89∘. We demonstrate that such very oblique chorus waves with realistic amplitudes can very efficiently nonlinearly transport nearly equatorially mirroring electrons toward smaller pitch angleswhere nonlinear scattering (phase bunching) via cyclotron resonance with quasi-parallel waves can take over and quickly send them to much lower pitch angles <40∘. The proposed double resonance mechanism could therefore explain the formation of butterfly pitch angle distributions as well as contribute to some fast dropouts of 30–150 keV electrons occurring during moderate geomagnetic disturbances at L = 4–6. Since 30–150 keV electrons represent a seed population for a further acceleration to relativistic energies by intense parallel chorus waves during storms or substorms, the proposed mechanism may have important consequences on the dynamics of 100 keV to MeV electron fluxes in the radiation belts
    corecore