1,779 research outputs found

    Natural convection in a shallow cavity with differentially heated end walls. Part 2. Numerical solutions

    Get PDF
    Numerical solutions of the full Navier-Stokes equations are obtained for the problem of natural convection in closed cavities of small aspect ratio with differentially heated end walls. These solutions cover the parameter range Pr = 6.983, 10 ≤ Gr ≤ 2x10^4 and 0.05 ≤ A ≤ 1. A comparison with the asymptotic theory of part 1 shows excellent agreement between the analytical and numerical solutions provided that A ≾ 0.1 and Gr^2A^3Pr^2 ≾ l0^5. In addition, the numerical solutions demonstrate the transition between the shallow-cavity limit of part 1 and the boundary-layer limit; A fixed, Gr → ∞

    Feedback-enhanced algorithm for aberration correction of holographic atom traps

    Get PDF
    We show that a phase-only spatial light modulator can be used to generate non-trivial light distributions suitable for trapping ultracold atoms, when the hologram calculation is included within a simple and robust feedback loop that corrects for imperfect device response and optical aberrations. This correction reduces the discrepancy between target and experimental light distribution to the level of a few percent (RMS error). We prove the generality of this algorithm by applying it to a variety of target light distributions of relevance for cold atomic physics.Comment: 5 pages, 4 figure

    Continuous macroscopic limit of a discrete stochastic model for interaction of living cells

    Get PDF
    In the development of multiscale biological models it is crucial to establish a connection between discrete microscopic or mesoscopic stochastic models and macroscopic continuous descriptions based on cellular density. In this paper a continuous limit of a two-dimensional Cellular Potts Model (CPM) with excluded volume is derived, describing cells moving in a medium and reacting to each other through both direct contact and long range chemotaxis. The continuous macroscopic model is obtained as a Fokker-Planck equation describing evolution of the cell probability density function. All coefficients of the general macroscopic model are derived from parameters of the CPM and a very good agreement is demonstrated between CPM Monte Carlo simulations and numerical solution of the macroscopic model. It is also shown that in the absence of contact cell-cell interactions, the obtained model reduces to the classical macroscopic Keller-Segel model. General multiscale approach is demonstrated by simulating spongy bone formation from loosely packed mesenchyme via the intramembranous route suggesting that self-organizing physical mechanisms can account for this developmental process.Comment: 4 pages, 3 figure

    Evolution of a fluorinated green fluorescent protein

    Get PDF
    The fluorescence of bacterial cells expressing a variant (GFPm) of the green fluorescent protein (GFP) was reduced to background levels by global replacement of the leucine residues of GFPm by 5,5,5-trifluoroleucine. Eleven rounds of random mutagenesis and screening via fluorescence-activated cell sorting yielded a GFP mutant containing 20 amino acid substitutions. The mutant protein in fluorinated form showed improved folding efficiency both in vivo and in vitro, and the median fluorescence of cells expressing the fluorinated protein was improved {approx}650-fold in comparison to that of cells expressing fluorinated GFPm. The success of this approach demonstrates the feasibility of engineering functional proteins containing many copies of abiological amino acid constituents

    Fermi Surface as the Driving Mechanism for Helical Antiferromagnetic Ordering in Gd-Y Alloys

    Full text link
    The first direct experimental evidence for the Fermi surface (FS) driving the helical antiferromagnetic ordering in a gadolinium-yttrium alloy is reported. The presence of a FS sheet capable of nesting is revealed, and the nesting vector associated with the sheet is found to be in excellent agreement with the periodicity of the helical ordering.Comment: 4 pages, 4 figure

    Developing young people's sense of self and place through sport

    Get PDF
    Previous research has recognized positive health implications, both physical and mental, as an outcome of participation in leisure pursuits. They provide opportunities for self-expression and stress reduction, as well as an environment in which people can socialize. Leisure activities, specifically sport activities, can play a significant role in young people's identity development. This paper explores the leisure activities in which young people in Adelaide, Australia participate. It examines the role of leisure activities in terms of young people's identity and feelings towards their hometown. This study consisted of semi-structured focus groups conducted with 24 senior high school students, followed by a survey resulting in 226 useable responses. Respondents were aged between 16 and 18 years of age. From the range of activities identified and explored, the results revealed sports activities to have the greatest impact on young people's lives. The results demonstrated that frequency of participation has a significant effect on young people's involvement levels and how they identify with the activity

    Dose ratio proton radiography using the proximal side of the Bragg peak

    Get PDF
    Purpose: In recent years there has been a movement towards single-detector proton radiography, due to its potential ease of implementation within the clinical environment. One such single-detector technique is the dose ratio method, in which the dose maps from two pristine Bragg peaks are recorded beyond the patient. To date, this has only been investigated on the distal side of the lower energy Bragg peak, due to the sharp fall-off. We investigate the limits and applicability of the dose ratio method on the proximal side of the lower energy Bragg peak, which has the potential to allow a much wider range of water-equivalent thicknesses (WET) to be imaged. Comparisons are made with the use of the distal side of the Bragg peak. Methods: Using the analytical approximation for the Bragg peak we generated theoretical dose ratio curves for a range of energy pairs, and then determined how an uncertainty in the dose ratio would translate to a spread in the WET estimate. By defining this spread as the accuracy one could achieve in the WET estimate, we were able to generate look-up graphs of the range on the proximal side of the Bragg peak that one could reliably use. These were dependent on the energy pair, noise level in the dose ratio image and the required accuracy in the WET. Using these look-up graphs we investigated the applicability of the technique for a range of patient treatment sites. We validated the theoretical approach with experimental measurements using a complementary metal oxide semiconductor active pixel sensor (CMOS APS), by imaging a small sapphire sphere in a high energy proton beam. Results: Provided the noise level in the dose ratio image was 1% or less, a larger spread of WETs could be imaged using the proximal side of the Bragg peak (max 5.31 cm) compared to the distal side (max 2.42 cm). In simulation it was found that, for a pediatric brain, it is possible to use the technique to image a region with a square field equivalent size of 7.6 cm2, for a required accuracy in the WET of 3 mm and a 1% noise level in the dose ratio image. The technique showed limited applicability for other patient sites. The CMOS APS demonstrated a good accuracy, with a root-mean-square-error of 1.6 mm WET. The noise in the measured images was found to be σ =1.2% (standard deviation) and theoretical predictions with a 1.96σ noise level showed good agreement with the measured errors. Conclusions: After validating the theoretical approach with measurements, we have shown that the use of the proximal side of the Bragg peak when performing dose ratio imaging is feasible, and allows for a wider dynamic range than when using the distal side. The dynamic range available increases as the demand on the accuracy of the WET decreases. The technique can only be applied to clinical sites with small maximum WETs such as for pediatric brains

    Experimental investigation of the initial regime in fingering electrodeposition: dispersion relation and velocity measurements

    Get PDF
    Recently a fingering morphology, resembling the hydrodynamic Saffman-Taylor instability, was identified in the quasi-two-dimensional electrodeposition of copper. We present here measurements of the dispersion relation of the growing front. The instability is accompanied by gravity-driven convection rolls at the electrodes, which are examined using particle image velocimetry. While at the anode the theory presented by Chazalviel et al. describes the convection roll, the flow field at the cathode is more complicated because of the growing deposit. In particular, the analysis of the orientation of the velocity vectors reveals some lag of the development of the convection roll compared to the finger envelope.Comment: 11 pages, 15 figures, REVTEX 4; reference adde

    Depth Mapping for Stereoscopic Videos

    Full text link
    • …
    corecore