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Abstract. We show that a phase-only spatial light modulator can be used to
generate non-trivial light distributions suitable for trapping ultracold atoms, when
the hologram calculation is included within a simple and robust feedback loop that
corrects for imperfect device response and optical aberrations. This correction
reduces the discrepancy between target and experimental light distribution to the
level of a few percent (RMS error). We prove the generality of this algorithm by
applying it to a variety of target light distributions of relevance for cold atomic
physics.
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A recent area of interest in the field of cold atomic
physics is the development of non-trivial spatially-
and temporally-varying optical trapping geometries,
with interesting examples already demonstrated using
techniques including acousto-optic deflection [1–4],
amplitude-modulation [5, 6] and phase-modulation [6–
15] of trapping light. Optical traps generally offer
increased trap complexity at small length-scales, but at
the disadvantage of increased likelihood of small-scale
potential roughness [16]. Any local roughness in the
intensity of the light pattern creates a varying energy
landscape, which could cause heating or fragmentation
of the atom cloud [17].

Fourier-engineered optical traps (those based on
phase-only spatial modulation of the light to tailor
the intensity in the Fourier plane of an optical
system) have predominantly taken the form of arrays
of discrete traps [8, 9] or Laguerre-Gauss beams [10].
Recently, a new calculation method for phase-only
holograms of arbitrary complexity directly addressed
the issue of roughness. This algorithm, the Mixed-
Region Amplitude Freedom (MRAF) [16] variant
of the Gerchberg–Saxton iterative Fourier transform
algorithm [18], calculates smooth and accurate light
patterns for use as optical atom traps. However,
other than in special cases [12], the output of this
algorithm does not give high-quality optical traps when
applied to real devices and must be further adjusted
[11,13,14]. We present a simple, robust and generally-
applicable algorithm to improve the accuracy of optical
traps generated by phase-only spatial light modulators
(SLMs).

The phase modulation required to produce the
optical traps is initially calculated using the MRAF
algorithm. For a given target intensity T1 in
the Fourier (i.e. output) plane, this algorithm
iteratively optimizes a proposed phase-only hologram
by emphasising accuracy of the electric-field amplitude
within a subset of the output plane (known as the
Signal Region). The target amplitude

√
T1 should

contain the pattern of interest plus a surrounding area
with zero amplitude. The amplitude is unconstrained
in the remainder of the output plane (the Noise
Region). The zero-amplitude region between the target
pattern and the unconstrained amplitude ensures that
atoms trapped in the Signal Region cannot tunnel
into whatever intensity distribution is generated in
the Noise Region. Calculations of trap quality are
performed considering only non-zero pixels within the

Figure 1. Block diagram outlining the basic principle of the
feedback algorithm, showcasing the example of a ring trap with
a restriction.

Signal Region (a subset known as the Measure Region,
which contains the target). Upon stagnation of the
MRAF routine, the algorithm returns an optimized
phase pattern φ1 on the SLM plane and a predicted
intensity P1, which closely resembles T1, on the output
plane.

Our apparatus for the production of red–detuned
optical traps where atoms will be trapped in intensity
maxima has been previously introduced in Refs [11,12].
A 1064 nm laser beam illuminates the full active area
of an SLM. Each of the 256 × 256 pixels can impart
256 phase levels between 0 and 2π on the light, which
is then focussed by a f = 100 mm achromatic doublet.
The focal plane of the lens constitutes the Fourier
plane, which is imaged using a CCD camera.

The phase φ1 is applied to the SLM and an
image of the resultant Fourier–plane intensity M1

recorded. This output typically significantly deviates
from T1 due to aberrations in the optical system and
imperfect device response. To solve the problem of
this deviation, we have designed a simple iterative
feedback algorithm to steer the light pattern within the
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Signal Region towards the initial target T1, as shown
in figure 1. The error signal for this feedback loop
is the discrepancy Di, which is quantified within the
Measure Region as Di = T̃1 − M̃i, where i denotes the
iteration number and the tilde signifies normalisation.
We normalize by the mean value of all pixels in the
output brighter than 50% of the maximum target
value. We choose this normalization as it is resistant
to both low-level background noise and particularly
bright, single-pixel, noise. A corrected target pattern
T̃i+1 = T̃i+Di is then generated which compensates for
the discrepancies. This new target serves as the input
for another iteration of MRAF, and generates a new
phase φi+1. The whole process is repeated until the
output pattern reaches a stagnation point, defined to
be after three subsequent iterations of feedback which
improve the root mean square (RMS) error εi by less
than a set tolerance value η, i.e. when |εi − εi−1| < η
for three subsequent values of i. For the examples
below we have set η = 0.01%. The algorithm is
sufficiently robust that successful pattern production
does not require pre-calculated wavefront corrections,
such as those provided by the SLM manufacturer or
acquired using a Shack-Hartmann wavefront sensor.

In practice we have found that increased accuracy
can be achieved by introducing a gain parameter α to
the feedback loop which is scheduled such that α > 0.5
for initial iterations to correct for large discrepancies
and can be decreased as the improvement between
iterations stagnates in order to impart more finely-
tuned corrections. Thus, T̃i+1 becomes T̃i+1 = T̃i+αDi

where α is empirically optimized and typically ranges
from 0.3 to 0.6 for later iterations depending on the
pattern.

We test the feedback algorithm on a variety of
patterns of interest, including a ring with a restriction,
a Gaussian double-well and various arrays of discrete
spots. A summary of the improvements to these
optical traps due to the feedback process, along with
the number of iterations required (ι) and the light-
usage efficiency (Γ), can be found in table 1. After
few iterations of the feedback loop, the measured
light profiles shown in figure 2 (continuous light
patterns) and figure 3 (discrete spot patterns) show
increased accuracy and more closely resemble their
target patterns.

As an evaluation metric we use the RMS error,

εi =

√
1

NMR

∑
MR

(
M̃i − T̃i

)2
, (1)

where NMR denotes the number of pixels in the
measure region. In real optical traps, atoms at
temperatures higher than 10% of the trap depth will
quickly evaporate from the trap [20]. Following this,
we also include the RMS error ε(10%) of only those

Figure 2. Continuous patterns optimized by feedback. (a) A
ring pattern with a Gaussian radial distribution and a restriction
(as in figure 1), showing the measured Signal Region intensity
using the initial MRAF-calculated phase profile (left) and after
8 iterations of feedback optimization (right), which improve
ε(10%) from 9.8% to 2.1%. (Below) The intensity around
the circumference showing the target pattern (red), and the
measured profile before (green) and after (blue) feedback. (b)
RMS error progression for the ring pattern, recorded at each
step of the feedback algorithm. (c) A Gaussian double well,
showing Signal-Region intensity before (left) and after (right)
feedback. (Below) A cut across the centre of the two wells,
showing normalized intensity for the initial, final and target
patterns. For this pattern, ε(10%) improved from 5.5% to 0.7%
within 10 iterations.
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Table 1. Summary of improvements, including error, iterations
(ι) and Efficiency (Γ).

ε [%] ε(10%) [%]
Pattern i=1 i=ι i=1 i=ι ι Γ [%]

Indented Ring 21.9 6.7 9.8 2.1 8 21.5
Double Well 19.0 5.5 5.5 0.7 10 20.0
Square Lattice 22.0 15.3 3.6 2.3 10 14.8
Ring Lattice 13.7 10.0 2.5 1.1 10 17.5

pixels within 10% of the brightest pixel - the trapping
minimum - as another figure of merit. Finally, light-
usage efficiencies Γ have been calculated for each of the
final output patterns. Around 50% of the light incident
on the SLM in our experimental set-up is diffracted into
the first-order and goes on to make up the hologram
(Signal and Noise regions). To find the overall trap
efficiency, we multiply the efficiency of the hologram
(the percentage of first-order light in the Signal Region)
with the 50% SLM efficiency.

The measured Signal Region intensity for the
indented ring is shown in figure 2(a). The main
deviation in the initial output is a left-right intensity
gradient due to the reduced diffraction efficiency of the
SLM at larger deflection angles. This initial pattern
has ε = 21.9%, and ε(10%) = 9.8% . The feedback
process corrects for this intensity gradient and also
corrects the width of the ring, improving ε to 6.7%
and ε(10%) to 2.1%. Along the circumference, large
fluctuations have been suppressed by the feedback
process as shown in the plot in figure 2(a). A
stagnation point is reached after 8 iterations of the
feedback loop, as plotted in figure 2(b). In this example
the value of α changes from 0.6 to 0.3 after the third
iteration. This evolution of the RMS error is typical
for most of our feedback optimizations, showing a
major improvement in the first iteration, followed by
smaller improvements converging to a more accurate
pattern. Most patterns are optimized in fewer than 10
iterations of feedback, which takes around 10 minutes
to complete. The final optimised phase pattern is saved
for future use in cold atoms experiments.

The final value of ε(10%) is sufficiently low for
experiments of interest in this atom ring-trap. If a
ring with 80µm radius and 12µm width is generated
with 3.5 mW of laser power, the trap depth is 69 nK.
If a Bose–Einstein condensate of 105 87Rb atoms is
trapped in this ring at zero magnetic field, the chemical
potential is sufficiently low (µ = 6.9 nK) for the atoms
to be confined. In particular, this trap can be used for
studies of superfluid effects; fluctuations of 2.1% in the
trap depth are smaller than µ/5, which is sufficiently
low that the superfluidity of the gas persists [21].
This ring pattern may be used to study transport
phenomena [22], while indented rings have also been

suggested for the study of sonic black hole analogs in
atomic condensates [23,24].

A pattern which particularly demonstrates the
robustness of the algorithm is the Gaussian double
well shown in figure 2(c), which has many uses for
investigating fundamental quantum mechanics [19].
Before feedback the initial output is aberrated to the
extent that it resembles a single-well potential. After
10 iterations (during which α is fixed at 0.6) the two
wells are clearly distinguishable.

Figure 3. Discrete patterns. Signal Region intensity of (a)
a 10 × 10 square lattice and (b) a 16-spot ring lattice before
(left) and after (right) feedback. Errors in the trapping minimum
decrease from 3.6% to 2.3% for the square lattice and from 2.5%
to 1.1% for the ring lattice.

In figure 3 the target patterns are different
arrangements of simple Gaussian spots of the same
intensity. The simple square array is analogous
to an optical lattice with the underlying spatially-
varying potential removed, while the ring lattice is
an experimental geometry which is interesting for
quantum simulation [25, 26], but which cannot be
created using more conventional methods such as
standing waves. Our feedback algorithm corrects
the size and position of aberrated spots within 10
iterations. We measure a decrease in ε from 22.0% to
15.3% for the square lattice, and from 13.7% to 10.0%
for the ring lattice, whilst ε(10%) is reduced from 3.6%
to 2.3% for the square lattice, and from 2.5% to 1.1%
for the ring lattice.

Experimental optimizations of holographic optical
traps have previously been performed for discrete
[14] and continuous geometries [13] by carefully
characterising the optical system (e.g. using a Shack-
Hartmann wavefront sensor) before applying active
feedback. By comparison, such careful characterisation
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is not required with our algorithm. Moreover, our
algorithm is sufficiently general to be applicable
to both discrete and continuous patterns. The
optimization in Ref [14] considers only the height of
distinct spots of light, quoting an improved standard
deviation of these heights from 19% to 1.4%. Our
algorithm corrects also the position and shape of the
spots. For comparison, we measure the standard
deviation of heights for the ring (square) lattice
spots and find an improvement from 20.3% to 1.3%
(12.5% to 2.1%). The optimization of continuous light
distributions performed in Ref [13] gives light patterns
with ε between 6% and 9%, which is again comparable
to the values we achieve for the indented ring and
double well (6.7% and 5.5% respectively).

In summary, the feedback algorithm is sufficiently
robust to correct for large aberrations in the
experimentally generated optical traps within few
iterations, bringing optical trap discrepancies to the
percent level. However, we note that it is important
to use the feedback method in conjunction with
a hologram–calculation algorithm that suppresses
optical vortices at the outset. This is because
the feedback is less effective at correcting defects
at small length-scales. The MRAF algorithm
used here is appropriate with well-chosen initial
conditions, while the recently–proposed Conjugate
Gradient optimization algorithm [27] is also suitable,
and we have already performed initial tests of the
compatibility of feedback with Conjugate Gradient
optimization, with promising results.

Improvements may be made to the feedback
algorithm upon its integration into a cold atoms
experiment. The sensitivity of cold atoms to any
trapping potential roughness means that we envisage
continuing to use the feedback loop by taking in-
situ images of the trapped atoms [5, 28] rather than
directly imaging the light profile. Furthermore, recent
developments of high numerical aperture microscope
objectives for cold-atoms [3,29–32] could be combined
with our approach to produce more finely detailed
traps, although this may require more sophisticated
calculation stages such as those performed in Ref [33].

Acknowledgments

The authors acknowledge helpful conversations and
experimental assistance from S. L. Bromley, T. Harte,
G. Smirne and L. Torralbo-Campo, and funding
from EPSRC UK and the Leverhulme Trust Research
Program Grant RPG-2013-074.

References

[1] Houston N, Riis E and Arnold A S 2008 J. Phys. B: At.
Mol. Opt. Phys. 41 211001

[2] Henderson K, Ryu C, MacCormick C and Boshier M G 2009
New J. Phys. 11 043030

[3] Zimmermann B, Müller T, Meineke J, Esslinger T and
Moritz H 2011 New J. Phys. 13 043007

[4] Trypogeorgos D, Harte T, Bonnin A and Foot C 2013 Opt.
Express 21 24837-46

[5] Muldoon C, Brandt L, Dong J, Stuart D, Brainis E,
Himsworth M and Kuhn A 2012 New J. Phys. 14 073051

[6] Lee J G and Hill III W T 2014 Rev. Sci. Instrum. 85
103106

[7] McGloin D, Spalding G, Melville H, Sibbett W and
Dholakia K 2003 Opt. Express 11 158–66
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