5 research outputs found

    Peroxisome-proliferator-activated receptors and the control of levels of prostaglandin-endoperoxide synthase 2 by arachidonic acid in the bovine uterus

    No full text
    Arachidonic acid is a potential paracrine agent released by the uterine endometrial epithelium to induce PTGS2 [PG (prostaglandin)-endoperoxide synthase 2] in the stroma. In the present study, bovine endometrial stromal cells were used to determine whether PTGS2 is induced by arachidonic acid in stromal cells, and to investigate the potential role of PPARs (peroxisome-proliferator-activated receptors) in this effect. Arachidonic acid increased PTGS2 levels up to 7.5-fold within 6 h. The cells expressed PPARα and PPARδ (also known as PPARβ) (but not PPARγ). PTGS2 protein level was increased by PPAR agonists, including polyunsaturated fatty acids, synthetic PPAR ligands, PGA1 and NSAIDs (non-steroidal anti-inflammatory drugs) with a time course resembling that of arachidonic acid. Use of agonists and antagonists indicated PPARα (but not PPARδ or PPARγ) was responsible for PTGS2 induction. PTGS2 induction by arachidonic acid did not require PG synthesis. PTGS2 levels were increased by the PKC (protein kinase C) activators 4β-PMA and PGF2α, and the effects of arachidonic acid, NSAIDs, synthetic PPAR ligands and 4β-PMA were blocked by PKC inhibitors. This is consistent with PPAR phosphorylation by PKC. Induction of PTGS2 protein by 4β-PMA in the absence of a PPAR ligand was decreased by the NF-κB (nuclear factor κB) inhibitors MG132 and parthenolide, suggesting that PKC acted through NF-κB in addition to PPAR phosphorylation. Use of NF-κB inhibitors allowed the action of arachidonic acid as a PPAR agonist to be dissociated from an effect through PKC. The results are consistent with the hypothesis that arachidonic acid acts via PPARα to increase PTGS2 levels in bovine endometrial stromal cells

    A Systematic Review and Meta-Analysis of Fecal Contamination and Inadequate Treatment of Packaged Water

    Get PDF
    <div><p>Background</p><p>Packaged water products provide an increasingly important source of water for consumption. However, recent studies raise concerns over their safety.</p><p>Objectives</p><p>To assess the microbial safety of packaged water, examine differences between regions, country incomes, packaged water types, and compare packaged water with other water sources.</p><p>Methods</p><p>We performed a systematic review and meta-analysis. Articles published in English, French, Portuguese, Spanish and Turkish, with no date restrictions were identified from online databases and two previous reviews. Studies published before April 2014 that assessed packaged water for the presence of <i>Escherichia coli</i>, thermotolerant or total coliforms were included provided they tested at least ten samples or brands.</p><p>Results</p><p>A total of 170 studies were included in the review. The majority of studies did not detect fecal indicator bacteria in packaged water (78/141). Compared to packaged water from upper-middle and high-income countries, packaged water from low and lower-middle-income countries was 4.6 (95% CI: 2.6–8.1) and 13.6 (95% CI: 6.9–26.7) times more likely to contain fecal indicator bacteria and total coliforms, respectively. Compared to all other packaged water types, water from small bottles was less likely to be contaminated with fecal indicator bacteria (OR = 0.32, 95%CI: 0.17–0.58) and total coliforms (OR = 0.10, 95%CI: 0.05, 0.22). Packaged water was less likely to contain fecal indicator bacteria (OR = 0.35, 95%CI: 0.20, 0.62) compared to other water sources used for consumption.</p><p>Conclusions</p><p>Policymakers and regulators should recognize the potential benefits of packaged water in providing safer water for consumption at and away from home, especially for those who are otherwise unlikely to gain access to a reliable, safe water supply in the near future. To improve the quality of packaged water products they should be integrated into regulatory and monitoring frameworks.</p></div

    A Systematic Review and Meta-Analysis of Fecal Contamination and Inadequate Treatment of Packaged Water

    No full text
    corecore