33 research outputs found

    An Electron Paramagnetic Resonance (Epr) Spin Labeling Study In Ht-29 Colon Adenocarcinoma Cells After Hypericin-Mediated Photodynamic Therapy

    No full text
    Background Colon cancer affects 1.23 million people worldwide and is the third most common malignant disease in men and the second in women. The only curative treatment is surgical resection, but a significant number of patients develop local recurrence or distant metastases. One of the alternative treatment methods for colon cancer is photodynamic therapy (PDT). In recent years, hypericin (HYP) derived from Hypericum perforatum has been suggested as a strong candidate photosensitizer for PDT. Our interest is focused on the biophysical changes in colon cancer cells in relation to HYP-mediated PDT. Results In this study, HYP-mediated PDT at 0.04, 0.08 or 0.15 μM HYP concentrations was performed in HT-29 colon adenocarcinoma cells and the Electron Paramagnetic Resonance (EPR) spectra of the spin labeled cells were obtained. Plasma membranes are already heterogeneous structures; the presence of cancer cells increased the heterogeneity and also fluidity of the plasma membranes. Therefore, the obtained spectra were evaluated by EPRSIMC program, which provides the calculation of heterogeneous structures up to four spectral components with different fluidity characteristics. Generally, two motional patterns were obtained from calculations and the number of them increased at the highest concentration. As the order parameters of the most populated components compared, an increase was observed depending on the HYP concentration. However, because of the heterogeneous structure of membrane, the order parameters of the less populated components did not exhibit a regular distribution. Conclusion After HYP-mediated PDT, concentration dependent changes were observed in the domain parameters indicating an increase in the HYP accumulation.PubMedWoSScopu

    The effect of a glyphosate-based herbicide on acetylcholinesterase (AChE) activity, oxidative stress, and antioxidant status in freshwater amphipod: Gammarus pulex (Crustacean)

    No full text
    This study had determined the effect of glyphosate-based herbicide (GBH) on acetylcholinesterase (AChE) enzyme activity, oxidative stress, and antioxidant status in Gammarus pulex. Firstly, the 96-h LC50 value of glyphosate on G. pulex was determined and calculated as 403 μg/L. Subsequently, the organisms were exposed to sub-lethal concentrations (10, 20, and 40 μg/L) of the determined GHB for 24 and 96 h. The samples were taken from control and GBH-treated groups at 24 and 96 h of study and analysed to determine the malondialdehyde (MDA) and reduced glutathione (GSH) levels, the AChE, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) enzyme activities. In the G. pulex exposed to GBH for 24 and 96 h, the MDA level increased significantly (p < 0.05). The GSH level, the AChE, the CAT, and the GPx activities decreased compared with the control group (p < 0.05). G. pulex exposure to GBH for 24 h showed a temporary reduction in the SOD. GBH exposure led to oxidative stress in the G. pulex as well as affected the cholinergic system of the organism. These results indicated that the parameters measured may be important indicators of herbicide contamination in G. pulex
    corecore