274 research outputs found

    The impact of venepuncture training on the reduction of pre?analytical blood sample haemolysis rates: A systematic review

    Get PDF
    BackgroundVenepuncture involves the introduction of a needle into a vein to collect a representative blood sample for laboratory testing. In the pre‐analytical phase, haemolysis (the rupturing of erythrocytes and release of their contents into the extracellular compartment) has safety, quality and cost implications. Training in correct venepuncture practice has the potential to reduce in vitro haemolysis rates, but the evidence for this notion has yet to be synthesised.DesignSystematic review (PRISMA Checklist).MethodsPublished studies on the effectiveness of venepuncture training on haemolysis rates were searched in relevant databases. The McMaster critical appraisal tool was used to assess methodological quality. The GRADE tool was used to evaluate the body of evidence in relation to the research questions. Implementation fidelity was also scrutinised in each study.ResultsEight out of 437 retrieved studies met the inclusion criteria. None were randomised controlled trials (RCT). Between‐study heterogeneity in design, intervention characteristics and the biochemical threshold for haemolysis precluded a meta‐analysis. Post‐training reductions in haemolysis rates of between 0.4%–19.8% were reported in four of the studies, which developed their intervention according to a clear evidence base and included mentoring in the intervention. Rises in haemolysis rates of between 1.3%–1.9% were reported in two studies, while the intervention effect was inconsistent within two other studies.ConclusionThere are no RCTS on the effectiveness of venepuncture training for reducing haemolysis rates, and findings from the existing uncontrolled studies are unclear. For a more robust evidence base, we recommend more RCTs with standardisation of haemolysis thresholds and training‐related factors.Relevance to clinical practiceWhile venepuncture training is an important factor influencing quality of blood sample in clinical practice, more robust evidence is needed to make specific recommendations about training content for reduction of haemolysis rates. Standardisation of haemolysis thresholds would also enable future meta‐analyses

    Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.

    Get PDF
    Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article

    Genome-Wide Association Reveals Pigmentation Genes Play a Role in Skin Aging

    Get PDF
    Loss of fine skin patterning is a sign of both aging and photoaging. Studies investigating the genetic contribution to skin patterning offer an opportunity to better understand a trait that influences both physical appearance and risk of keratinocyte skin cancer. We undertook a meta-analysis of genome-wide association studies (GWAS) of a measure of skin pattern (microtopography score) damage in 1,671 twin pairs and 1,745 singletons (N = 5,087) drawn from three independent cohorts. We identified that rs185146 near SLC45A2 is associated with a skin aging trait (p = 4.1 × 10-9); to our knowledge this is previously unreported. We also confirm previously identified loci, rs12203592 near IRF4 (p = 8.8 × 10-13), and rs4268748 near MC1R (p = 1.2 × 10-15). At all three loci we highlight putative functionally relevant SNPs. There are a number of red hair/low pigmentation alleles of MC1R; we found that together these MC1R alleles explained 4.1% of variance in skin pattern damage. We also show that skin aging and reported experience of sunburns was proportional to the degree of penetrance for red hair of alleles of MC1R. Our work has uncovered genetic contributions to skin aging and confirmed previous findings, showing that pigmentation is a critical determinate of skin aging

    Seroprevalence and risk factors for toxoplasma infection among pregnant women in Aydin province, Turkey

    Get PDF
    BACKGROUND: The aims of the present study were to determine the prevalence of toxoplasmosis in pregnant women at first trimester of their pregnancy and to follow up the seroconversion for next two trimesters, and to identify the risk factors and possible contamination routes in Aydin province, Turkey. METHOD: The sample size was calculated as 423 on a prevalence of 50%, d=0.05 at a confidence level of 95% with 10% addition. It was a cross-sectional study with multistage sampling. After a questionnaire applied to the pregnant women, anti-Toxoplasma IgG antibodies were studied with ELISA and IFA, values in conflict with DA test, where IgM antibodies were studied with ELISA and for borderline or positive values of IgM avidity test was used. RESULTS: The mean age of 389 (92.9%) of pregnant women in the study was 24.28+/-4.56 years, the seroprevalence of anti-Toxoplasma IgG antibodies for toxoplasmosis was 30.1%. Seroprevalence was increased with age (p=0.001) and with drinking water consumption other than bottled water (p=0.042). No significant relations were observed between anti-Toxoplasma IgG antibodies and education level, being native or migrant, abortion history, consumption of meat, vegetable and milk/milk products, personal or kitchen hygiene habits, cat owning at home of the pregnant women. No IgM antibody was detected. CONCLUSION: One of every three pregnant women in Aydin was at risk of toxoplasmosis at the first trimester of their pregnancy. Increased seroprevalance with age was a predictable result because of increasing time of exposure. Increased seroprevalence with consumption of municipal and uncontrolled water (well/spring water) supplies was similar with latest epidemiological findings

    Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, and interactions with Climate Change: 2022 Assessment Report

    Get PDF
    The Montreal Protocol on Substances that Deplete the Ozone Layer was established 35 years ago following the 1985 Vienna Convention for protection of the environment and human health against excessive amounts of harmful ultraviolet-B (UV-B, 280-315 nm) radiation reaching the Earth’s surface due to a reduced UV-B-absorbing ozone layer. The Montreal Protocol, ratified globally by all 198 Parties (countries), controls ca 100 ozone-depleting substances (ODS). These substances have been used in many applications, such as in refrigerants, air conditioners, aerosol propellants, fumigants against pests, fire extinguishers, and foam materials. The Montreal Protocol has phased out nearly 99% of ODS, including ODS with high global warming potentials such as chlorofluorocarbons (CFC), thus serving a dual purpose. However, some of the replacements for ODS also have high global warming potentials, for example, the hydrofluorocarbons (HFCs). Several of these replacements have been added to the substances controlled by the Montreal Protocol. The HFCs are now being phased down under the Kigali Amendment. As of December 2022, 145 countries have signed the Kigali Amendment, exemplifying key additional outcomes of the Montreal Protocol, namely, that of also curbing climate warming and stimulating innovations to increase energy efficiency of cooling equipment used industrially as well as domestically. As the concentrations of ODS decline in the upper atmosphere, the stratospheric ozone layer is projected to recover to pre-1980 levels by the middle of the 21st century, assuming full compliance with the control measures of the Montreal Protocol. However, in the coming decades, the ozone layer will be increasingly influenced by emissions of greenhouse gases and ensuing global warming. These trends are highly likely to modify the amount of UV radiation reaching the Earth\u27s surface with implications for the effects on ecosystems and human health. Against this background, four Panels of experts were established in 1988 to support and advise the Parties to the Montreal Protocol with up-to-date information to facilitate decisions for protecting the stratospheric ozone layer. In 1990 the four Panels were consolidated into three, the Scientific Assessment Panel, the Environmental Effects Assessment Panel, and the Technology and Economic Assessment Panel. Every four years, each of the Panels provides their Quadrennial Assessments as well as a Synthesis Report that summarises the key findings of all the Panels. In the in-between years leading up to the quadrennial, the Panels continue to inform the Parties to the Montreal Protocol of new scientific information

    Genetic variation affects morphological retinal phenotypes extracted from UK Biobank optical coherence tomography images

    Get PDF
    Optical Coherence Tomography (OCT) enables non-invasive imaging of the retina and is used to diagnose and manage ophthalmic diseases including glaucoma. We present the first large-scale genome-wide association study of inner retinal morphology using phenotypes derived from OCT images of 31,434 UK Biobank participants. We identify 46 loci associated with thickness of the retinal nerve fibre layer or ganglion cell inner plexiform layer. Only one of these loci has been associated with glaucoma, and despite its clear role as a biomarker for the disease, Mendelian randomisation does not support inner retinal thickness being on the same genetic causal pathway as glaucoma. We extracted overall retinal thickness at the fovea, representative of foveal hypoplasia, with which three of the 46 SNPs were associated. We additionally associate these three loci with visual acuity. In contrast to the Mendelian causes of severe foveal hypoplasia, our results suggest a spectrum of foveal hypoplasia, in part genetically determined, with consequences on visual function

    Capturing wheat phenotypes at the genome level

    Get PDF
    Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world’s most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public–private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence

    Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future

    Get PDF
    Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV) radiation conditions at the Earth's surface. Ozone depletion has also contributed to climate change across the Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production and use of ozone-depleting substances. This international treaty has also played an important role in mitigating climate change. Climate change is modifying UV exposure and affecting how people and ecosystems respond to UV; these effects will become more pronounced in the future. The interactions between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.Peer reviewe
    • 

    corecore