963 research outputs found

    Radiation in medicine: Origins, risks and aspirations.

    Get PDF
    The use of radiation in medicine is now pervasive and routine. From their crude beginnings 100 years ago, diagnostic radiology, nuclear medicine and radiation therapy have all evolved into advanced techniques, and are regarded as essential tools across all branches and specialties of medicine. The inherent properties of ionizing radiation provide many benefits, but can also cause potential harm. Its use within medical practice thus involves an informed judgment regarding the risk/benefit ratio. This judgment requires not only medical knowledge, but also an understanding of radiation itself. This work provides a global perspective on radiation risks, exposure and mitigation strategies

    An evaluation of secondary prophylaxis for rheumatic heart disease in rural Egypt.

    No full text
    Although essentially disappeared from the industrialized world, rheumatic heart disease (RHD) is still prevalent in developing countries, with 300,000 new cases identified each year. In Aswan, Egypt, RHD affects about 2.3% of children with over 90% of the cases being subclinical. Secondary prophylaxis has proved to be an effective method of preventing the progression of RHD. However, its efficacy is limited by low patient adherence. A systematic, generalizable tool is necessary to outline, and ultimately address these barriers.A 43-item semi-structured questionnaire was developed based on the three domains outlined by Fishbein (capability, intention, and health care barriers). A preliminary evaluation of the barriers to RHD prophylaxis use in Aswan, Egypt was carried out as a pilot study using this tool. Participants were local school children diagnosed with RHD or flagged as high-risk (as per a set of echocardiographic criteria developed by the Aswan Heart Centre) through a previous screening program of randomly selected 3,062 school children in Aswan.29 patients were interviewed (65.5% adherent to RHD prophylaxis). Compared to non-adherent patients, adherent patients had better understanding of the disease (68.4% versus 20% in the non-adherent group, p = 0.021), and were more aware of the consequences of missing prophylaxis doses (79% versus 40% of non-adherent patients, p = 0.005). Furthermore, 90% of non-adherent patients consciously choose to miss injection appointments (as compared to 31.6% of adherent patients, p = 0.005). Clinic wait time was the most frequently reported deterrent for both groups.A standardized tool that systematically outlines barriers to prophylaxis is a necessary first step to improving adherence to penicillin. Although individually developed tools exist for specific populations, a generalizable tool that takes into account the demographic and cultural differences in the populations of interest will allow for more reliable data collection methodology. Application of this tool will be used to further explore barriers to prophylaxis adherence and inform the basis for the design of future KT interventions

    Knitting for heart valve tissue engineering.

    Get PDF
    Knitting is a versatile technology which offers a large portfolio of products and solutions of interest in heart valve (HV) tissue engineering (TE). One of the main advantages of knitting is its ability to construct complex shapes and structures by precisely assembling the yarns in the desired position. With this in mind, knitting could be employed to construct a HV scaffold that closely resembles the authentic valve. This has the potential to reproduce the anisotropic structure that is characteristic of the heart valve with the yarns, in particular the 3-layered architecture of the leaflets. These yarns can provide oriented growth of cells lengthwise and consequently enable the deposition of extracellular matrix (ECM) proteins in an oriented manner. This technique, therefore, has a potential to provide a functional knitted scaffold, but to achieve that textile engineers need to gain a basic understanding of structural and mechanical aspects of the heart valve and in addition, tissue engineers must acquire the knowledge of tools and capacities that are essential in knitting technology. The aim of this review is to provide a platform to consolidate these two fields as well as to enable an efficient communication and cooperation among these two research areas

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    Membrane-transferring regions of gp41 as targets for HIV-1 fusion inhibition and viral neutralization

    Get PDF
    12 páginas, 4 figurasThe fusogenic function of HIV-1 gp41 transmembrane Env subunit relies on two different kinds of structural elements: i) a collapsible ectodomain structure (the hairpin or six-helix bundle) that opens and closes, and ii) two membrane- transferring regions (MTRs), the fusion peptide (FP) and the membrane-proximal external region (MPER), which ensure coupling of hairpin closure to apposition and fusion of cell and viral membranes. The isolation of naturally produced short peptides and neutralizing IgG-s, that interact with FP and MPER, respectively, and block viral infection, suggests that these conserved regions might represent useful targets for clinical intervention. Furthermore, MTR-derived peptides have been shown to be membrane-active. Here, it is discussed the potential use of these molecules and how the analysis of their membrane activity in vitro could contribute to the development of HIV fusion inhibitors and effective immunogensThe authors wish to thank financial support obtained from Spanish MICINN (BIO2008- 00772) (JLN) and University of the Basque Country (GIU 06/42 and DIPE08/12) (NH and JLN).Peer reviewe

    The complex α-μ fading channel with OFDM application

    Get PDF
    The aims of this paper are threefold: (i) to present a model for the complex - fading channel; (ii) to propose an efficient, simple, and general method to generate complex - samples; (iii) to make use of this channel in order to assess the bit error rate performance of an OFDM system. An analytical framework is then used, whose output is validated through Monte Carlo simulation. Several important conclusions concerning the system performance as a function of the channel parameters, namely, nonlinearity, clustering, and power imbalance of in-phase and quadrature components, are drawn2017Recent advances in RF propagation modeling for 5G systemsFINANCIADORA DE ESTUDOS E PROJETOS - FINEP01.14.0231.0

    MRI T2 and T1ρ relaxation in patients at risk for knee osteoarthritis: A systematic review and meta-analysis

    Get PDF
    © 2019 The Author(s). Background: Magnetic resonance imaging (MRI) T2 and T1ρ relaxation are increasingly being proposed as imaging biomarkers potentially capable of detecting biochemical changes in articular cartilage before structural changes are evident. We aimed to: 1) summarize MRI methods of published studies investigating T2 and T1ρ relaxation time in participants at risk for but without radiographic knee OA; and 2) compare T2 and T1ρ relaxation between participants at-risk for knee OA and healthy controls. Methods: We conducted a systematic review of studies reporting T2 and T1ρ relaxation data that included both participants at risk for knee OA and healthy controls. Participant characteristics, MRI methodology, and T1ρ and T2 relaxation data were extracted. Standardized mean differences (SMDs) were calculated within each study. Pooled effect sizes were then calculated for six commonly segmented knee compartments. Results: 55 articles met eligibility criteria. There was considerable variability between scanners, coils, software, scanning protocols, pulse sequences, and post-processing. Moderate risk of bias due to lack of blinding was common. Pooled effect sizes indicated participants at risk for knee OA had lengthened T2 relaxation time in all compartments (SMDs from 0.33 to 0.74; p \u3c 0.01) and lengthened T1ρ relaxation time in the femoral compartments (SMD from 0.35 to 0.40; p \u3c 0.001). Conclusions: T2 and T1ρ relaxation distinguish participants at risk for knee OA from healthy controls. Greater standardization of MRI methods is both warranted and required for progress towards biomarker validation
    corecore