Western University Scholarship@Western

Bone and Joint Institute

5-1-2019

MRI T2 and T1**p** relaxation in patients at risk for knee osteoarthritis: A systematic review and meta-analysis

Hayden F. Atkinson The University of Western Ontario

Trevor B. Birmingham The University of Western Ontario

Rebecca F. Moyer The University of Western Ontario

Daniel Yacoub The University of Western Ontario

Lauren E. Kanko The University of Western Ontario

See next page for additional authors

Follow this and additional works at: https://ir.lib.uwo.ca/boneandjointpub

Part of the Medicine and Health Sciences Commons

Citation of this paper:

Atkinson, Hayden F.; Birmingham, Trevor B.; Moyer, Rebecca F.; Yacoub, Daniel; Kanko, Lauren E.; Bryant, Dianne M.; Thiessen, Jonathan D.; and Thompson, R. Terry, "MRI T2 and T1p relaxation in patients at risk for knee osteoarthritis: A systematic review and meta-analysis" (2019). *Bone and Joint Institute*. 1400. https://ir.lib.uwo.ca/boneandjointpub/1400

Authors

Hayden F. Atkinson, Trevor B. Birmingham, Rebecca F. Moyer, Daniel Yacoub, Lauren E. Kanko, Dianne M. Bryant, Jonathan D. Thiessen, and R. Terry Thompson

RESEARCH ARTICLE

MRI T2 and T1p relaxation in patients at risk for knee osteoarthritis: a systematic review and meta-analysis

Hayden F. Atkinson^{1,2,3}, Trevor B. Birmingham^{1,2,3,8*}, Rebecca F. Moyer^{3,4}, Daniel Yacoub⁵, Lauren E. Kanko^{1,2,3}, Dianne M. Bryant^{1,2,3}, Jonathan D. Thiessen^{6,7} and R. Terry Thompson^{6,7}

Abstract

Background: Magnetic resonance imaging (MRI) T2 and T1p relaxation are increasingly being proposed as imaging biomarkers potentially capable of detecting biochemical changes in articular cartilage before structural changes are evident. We aimed to: 1) summarize MRI methods of published studies investigating T2 and T1p relaxation time in participants at risk for but without radiographic knee OA; and 2) compare T2 and T1p relaxation between participants at-risk for knee OA and healthy controls.

Methods: We conducted a systematic review of studies reporting T2 and T1p relaxation data that included both participants at risk for knee OA and healthy controls. Participant characteristics, MRI methodology, and T1p and T2 relaxation data were extracted. Standardized mean differences (SMDs) were calculated within each study. Pooled effect sizes were then calculated for six commonly segmented knee compartments.

Results: 55 articles met eligibility criteria. There was considerable variability between scanners, coils, software, scanning protocols, pulse sequences, and post-processing. Moderate risk of bias due to lack of blinding was common. Pooled effect sizes indicated participants at risk for knee OA had lengthened T2 relaxation time in all compartments (SMDs from 0.33 to 0.74; p < 0.01) and lengthened T1p relaxation time in the femoral compartments (SMD from 0.35 to 0.40; *p* < 0.001).

Conclusions: T2 and T1p relaxation distinguish participants at risk for knee OA from healthy controls. Greater standardization of MRI methods is both warranted and required for progress towards biomarker validation.

Keywords: T2 relaxation, T1p relaxation, Articular cartilage, Knee osteoarthritis, Imaging biomarker

Background

Magnetic resonance imaging (MRI) is commonly used to study knee osteoarthritis (OA), largely because of its ability to visually detect morphological changes in soft tissues [1-6]. However, in addition to visualizing structures within a joint, the measurable characteristics of MRI enable the quantification of tissue biochemistry, often termed compositional MRI.

Although several types of compositional MRI techniques exist, the vast majority of research in OA focuses

²Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada Full list of author information is available at the end of the article

> © The Author(s), 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

on knee articular cartilage T2 and T1p relaxation times as these are suggested to show considerable promise and be clinically feasible [7-10]. Although the reported strengths of the correlations are variable, T2 and T1p relaxation times are associated with the composition of the extracellular matrix. T2 relaxation is inversely correlated with collagen network organization and structure, and is directly correlated with free water content [7]. Changes in T1p relaxation appear to be less specific, yet are also sensitive to changes in the extracellular matrix [8–14]. When the extracellular matrix of articular cartilage is compromised, characteristic of early biochemical processes in OA, water moves more freely within the cartilage, prolonging both MRI T2 and T1p relaxation time [13, 15, 16].

BMC Musculoskeletal

^{*} Correspondence: tbirming@uwo.ca

¹School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada

T2 and T1p relaxation have engendered considerable interest as a potential biomarkers for knee OA [17], especially given their proposed ability to detect biochemical changes in articular cartilage before structural changes are evident [15, 18, 19]. If these measures can detect compromised articular cartilage prior to radiographic evidence of OA, they may have the potential to serve as an outcome measure in early intervention studies targeting at-risk populations, such as people with knee anterior cruciate ligament (ACL) rupture [20-22], meniscal injuries [23, 24], or obesity [25, 26]. While this may be true of other compositional MRI measures (such as sodium, glycosaminoglycan chemical exchange saturation transfer [gagCEST], delayed gadolinium enhanced MRI of cartilage [dGEMRIC] [27]), T2 and T1p relaxation are perhaps the most clinically feasible, do not require a contrast agent, and are the focus of numerous studies that may enable meta-analysis when investigating their potential use as a biomarker.

Previous systematic reviews are encouraging in that they suggest T2 and T1p measures can be highly reliable when similar testing methods are used [27], and can distinguish between articular cartilage of healthy controls and patients with established radiographic OA [27, 28]. There are established criteria, however, for biomarker validation and qualification [29-31]. These include the ability to consistently measure the biomarker across testing sites [32, 33]. The extent to which previous studies investigating compositional MRI have used similar collection and analysis methods is presently unclear, and has been recently called into question [34]. Moreover, the potential utility of a biomarker to detect changes in the composition of knee articular cartilage relies on its ability to do so early in the disease process, before degenerative joint changes are evident on x-ray. Although there is abundant evidence suggesting T2 and T1p relaxation times are prolonged in knees with established radiographic OA compared to healthy knees [27, 28], the ability to detect changes between knees at risk for OA and healthy knees is less clear.

Therefore, purposes of this systematic review and meta-analysis were to: 1) summarize the MRI methods of published studies investigating T2 and T1 ρ relaxation times in participants at risk for but without radiographic knee OA; and 2) compare T2 and T1 ρ relaxation values between participants at-risk for knee OA and healthy controls.

Methods

This systematic review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [35] (Additional file 1: Appendix 5) (PROSPERO ID: CRD42018088352).

Literature search

We sought the assistance of a research librarian to develop the search strategy. We searched the following electronic databases from their inception to June 2018: MEDLINE, EMBASE, Scopus, Cumulative Index to Nursing & Allied Health Literature (CINAHL), SPORT-Discus, and Web of Science, in addition to hand searching reference lists of included articles. Combined and truncated keywords and subject headings included "magnetic resonance imaging" AND "T2 mapping OR T1rho mapping OR T2 relaxation OR T1rho relaxation" AND "osteo-arthritis OR articular cartilage" AND "knee OR tibiofe-moral OR patellofemoral". A full example of the search strategy is provided in Additional file 1: Appendix 1.

Eligibility criteria

Eligible studies included those published in English that reported T2 and/or T1p relaxation time in knee articular cartilage in at least two groups of participants including one group with any of the criteria commonly accepted for being at risk for knee OA, and a control group without any of those criteria. All study designs were considered. We used the Osteoarthritis Initiative (OAI) Incidence cohort criteria [36] to define a list of criteria for participants at risk for knee OA. These criteria include native knee symptoms in the past 12 months, overweight or obesity, history of knee injury which would cause difficulty walking for at least a week, history of knee surgery, family history of OA, lifestyle factors such as occupational risk (i.e. repetitive knee bending, squatting, lifting, etc.), age 70 years or older, and Kellgren & Lawrence (KL) radiographic grading of 0 or 1 [37]. Studies that included at-risk knees and contralateral healthy knees within the same participant were also included. We excluded patients with KL grade 2 or higher. For studies with multiple follow-up time points, only the baseline T2 and/or T1p relaxation data were used in our meta-analyses. Two reviewers independently assessed the eligibility of each article in two stages. Two reviewers independently assessed all titles and abstracts identified by the search. Articles meeting the inclusion criteria, according to at least one reviewer, were obtained as full-text manuscripts for further review. Articles meeting the inclusion criteria after full-text review were accepted in the review. Reviewers discussed any conflicts at all stages and a consensus was achieved.

Data extraction

Two reviewers independently extracted T2 and T1 ρ relaxation time of knee articular cartilage in six primary compartments: medial femoral condyle (MF), medial tibial plateau (MT), lateral femoral condyle (LF), lateral tibial plateau (LT), patellar cartilage (P), and trochlear

groove of the femur (TrF) cartilage. If authors presented laminar differences (superficial and deep cartilage as separate regions of interest) the data from both regions were pooled. Given the variability in defining anterior, central, and posterior subregions of the femur and tibia across studies, we pooled the identified subregions (where necessary) to best analyze the load-bearing regions of the femoral condules (generally in the region of the anterior horn of the meniscus to the posterior horn of the meniscus). For the P and TrF, we pooled all subregions (where necessary) to obtain a single value for the P or TrF. Reviewers discussed any conflicts and achieved consensus in all cases. Reviewers independently extracted relaxation time means and standard deviations (SD) for each participant group. The same reviewers also extracted the following information from each article: sample size, participant demographics, risk factors for OA, MRI hardware, pulse sequences, and parameters. Authors were contacted when sufficient data were not reported. If data were not provided or unclear, we contacted the original authors using provided e-mail addresses. In the case of no reply from the authors, we extracted data from figures when available. We used Covidence systematic review and meta-analysis software (www.covidence.org) to extract data.

Quality assessment

Two reviewers independently evaluated the methodological quality of each study using the Risk of Bias in Nonrandomized Studies of Interventions (ROBINS-I) tool [38], consisting of seven items to assess the internal validity of each study (confounding, participant selection, intervention classification, deviation from intervention, missing data, outcome measurement, and outcome selection). Each item was evaluated as a low, moderate, serious, or critical risk of bias. Disagreements between reviewers were resolved by consensus after initial independent evaluation.

Data analyses

We assessed agreement between reviewers using the kappa (κ) statistic. We compared compositional MRI data by calculating pooled estimates with 95% confidence intervals (95% CIs) for standardized mean differences (SMDs) using random-effects models. When calculating pooled effect sizes, we weighted all SMDs based on the sample size of the respective study. For both T2 and T1 ρ relaxation time, the SMD was calculated using the difference between healthy controls and participants at risk for knee OA, divided by the pooled SD. If a study had multiple groups at risk for knee OA, only the group with the lowest risk was included in the calculation of the overall pooled effect size, based on reported measures of disease severity (KL Grade, International

Cartilage Repair Society [ICRS] grade, Outerbridge Score, Whole Organ MRI Score [WORMS], etc.). All meta-analyses were performed using the Comprehensive Meta-Analysis software program (V3, Biostat; https://www.metaanalysis.com). We interpreted the magnitude of the SMD using Cohen's *d* as small (< 0.2), moderate (0.2–0.8) and large (> 0.8) and positive values representing prolonged relaxation times in participants at risk for OA [39]. We assessed publication bias using the Egger's Regression test [40], and if present, further analyses were planned to explore treatment effects adjusted for selective reporting [41]. We assessed the proportion of variability associated with heterogeneity using the I² statistic and Q statistic [42]. We interpreted the size of I² as low (25%), moderate (50%) or high (75%) heterogeneity [42].

Sensitivity analyses

We repeated the primary analyses after excluding all but one study (with the greatest sample size) that included OAI participants to ensure we included data from the same knee only once. We also repeated the analyses after excluding studies that used both limbs from the same participant.

In the event of substantial heterogeneity, we planned three subgroup analyses. These groups included participants with a history of ACL injury (based on physical exam, imaging, or surgical confirmation), participants at risk for patellofemoral OA (based on the OAI Incidence cohort criteria) [36], and participants with articular cartilage injuries based on MR imaging, arthroscopic ICRS grades, or Outerbridge scores [43, 44].

Results

Study selection & article screening

We performed the initial search August 1st, 2018 and updated the search March 7th, 2019. We identified 6417 articles by the database search. After removing duplicates, we reviewed 3071 articles by title and abstract with excellent inter-rater agreement (κ =0.96) and 53 disagreements (1.7%) between reviewers. Disagreements were discussed, and after consensus, 386 articles were deemed eligible for full-text review (Fig. 1). After full text reviews, inter-rater agreement was excellent ($\kappa = 0.95$), with 12 disagreements between reviewers. Disagreements were discussed, and after consensus, 55 articles met our inclusion criteria (Fig. 1) [15, 16, 20, 23, 24, 45-94], with a total of 3676 participants. Forty-seven studies were included in the meta-analysis, including data from 3079 participants. Articles included in the systematic review but excluded from the meta-analysis either examined incomparable regions of interest (ROI), or had insufficient data to be included in the meta-analyses [54, 66, 68, 69, 77, 85, 89, 90].

Study characteristics

Characteristics of all studies included in the systematic review are described in Table 1 [15, 16, 20, 23, 24, 45–94]. T2 relaxation was included as an outcome measure in 38 studies, T1p relaxation was an outcome measure in 24 studies, and 8 of those studies evaluated both T2 and T1p relaxation. Studies varied considerably in terms of compositional MRI data acquisition and post-processing. Two different magnet strengths, four different manufacturers, 12 different magnet models, 16 different reported knee coils, 17 reported pulse sequences, and a wide variety of parameters were used to acquire compositional MRI data.

Quality assessment

Agreement between reviewers for all seven items in the ROBINS-I tool was moderate ($\kappa = 0.54$, 95% CI = 0.48–0.61), with disagreements being primarily on the subjective severity of bias rather than the presence or absence of bias. Forty-five studies presented with a moderate overall risk of bias, seven presented with a serious risk of bias, and three presented with a low risk of bias. The most common sources of risk for bias was lack of blinding, or reporting of blinding, of the outcome assessors, as well as risk of bias in participant selection. No studies were excluded based on quality assessment. Results of the quality assessment are included in Additional file 1: Appendix 2.

Descriptive analyses

Forty-seven out of 55 studies observed a significant increase in compositional MRI values in one or more regions of interest in the at-risk group compared to the healthy control group. Specifically, 31 of 38 studies assessing T2 relaxation time reported significant lengthening in the at-risk group, and 21 of 24 studies assessing T1 ρ relaxation time reported significant lengthening in the at-risk group.

Meta-analyses

We were able to pool data for T2 and/or T1 ρ relaxation time for cartilage ROIs in the MF and LF, MT and LT, P, and TrF cartilage. Forest plots, including individual and pooled SMDs are presented in Figs. 2, 3, and 4.

At-risk knees had significantly prolonged T2 relaxation times for all compartments, small-to-moderate effect sizes (SMD = 0.33–0.74; p < 0.001; Figs. 2, 3, and 4). At-risk knees had significantly prolonged T1 ρ relaxation times for the MF and LF with small effect sizes (SMD = 0.35–0.40; p < 0.001; Figs. 2a, 3a). There were no significant differences in T1 ρ relaxation between groups for the MT, LT, P, or TrF compartments (SMD = 0.04–0.19, p > 0.05–0.76; Figs. 2b, 3b and 4b).

Publication Bias and heterogeneity

Egger's regression test for publication bias was not significant for any meta-analysis assessing pooled SMD of T2 relaxation time. For T1 ρ relaxation time, meta-analyses of the MF and LT compartments showed significant evidence of publication bias (p < 0.01). After using Duval & Tweedie's trim and fill method [41] to correct for publication bias, T1 ρ relaxation time of the MF was not significantly different in participants at risk for knee OA (SMD = 0.16[95% CI:-0.07;0.40]; p = 0.17). After adjustment for publication bias, T1 ρ relaxation time of the LT remained non-significant (SMD = 0.17[95% CI:-0.38;0.71]; p = 0.54).

For meta-analyses assessing T2 relaxation time, heterogeneity was significant for all analyzed compartments ($I^2 =$ 77–87%; p < 0.01) except for the TrF compartment (I² = 31%; p = 0.19). Four studies consistently contributed to the heterogeneity of T2 relaxation SMD, including two studies fitting in the cartilage injury subgroup. Removal of these studies resulted in non-significant heterogeneity in the MF and P compartments ($I^2 = 19-23\%$; p > 0.2); however, heterogeneity remained high after removal of outliers in the MT and LF compartments ($I^2 = 66-70\%$, p > 0.01). After removal of outliers, T2 relaxation time remained significantly prolonged for those at risk for knee OA. For meta-analyses assessing T1p relaxation time, heterogeneity was significant for the MF and LT compartments ($I^2 = 44-87\%$; p < 0.01), and non-significant for all other compartments $(I^2 = 0 -$ 28%; p = 0.15-0.94). The trim & fill method [41] is limited

Authors	Participants	n (n _{male})	Age	Scanner	Coil	T1p Sequence (resolution)	TSL (ms)/SL Frequency (Hz)	T2 Sequence (resolution)	TR/TE
Amano et al. (2016) ^c	Control	19 (13)	31 ±5	3T GE	Invivo 8-Ch Tx/Rx	Sag 3D MAPSS (0.3×0.3×1.5)	0, 10, 40, 80/500	Sag 3D MAPSS (0.3×0.3×1.5)	4000/0, 13, 26, 51
	ACL injured	51 (29)	29 ±9						
van der Heijden et al.	Control	70 (29)	23 ±6	3T GE	Invivo 8-Ch Tx/Rx	3D FSE (0.5×0.8×3.0)	1, 16, 32, 64, 125/500	3D FSE (0.5×0.8×3.0)	1263/3, 13, 27, 40, 68
(2016)-	PFP	64 (35)	23 ±7			[3 SIICES/SK]		[3 SIICES/SK]	
Apprich et al. (2010) ^{bc}	ICRS Grade 0	14 (N/ A)	37 ±8	3T Siemens	8-Ch Knee Array			Ax 2D MESE (0.4×0.4×3.0)	1200/14, 28, 41, 55, 69, 83
	ICRS Grade 1	5 (N/ A)	37 ±8						
Apprich et al. (2012) ^{bc}	ICRS Grade 0	11 (N/ A)	30 ±9	3T Siemens	8-Ch Knee Array			Ax 2D MESE (0.2×0.2×2.0)	1200/14, 28, 41, 55, 69, 83
	ICRS Grade 1	10 (N/ A)	30 ±9						
Bae et al. (2015) ^{bc}	Uninjured Knee	10 (7)	34 ±8	3T Siemens	Siemens 8-Ch Tx/Rx			2D ME-FSE (0.5×0.5×3.0)	1700/11, 21, 32, 42, 53, 64, 74, 85, 95, 106
	ACLR Knee	10 (7)	34 ±8					[3 slices/SR]	
Baum et al. (2012) ^{ac}	OAI Healthy	42 (21)	50 ±3	3T Siemens	Siemens 15-Ch Tx/Rx			Sag 2D MESE (0.3×0.4×3.0)	2700/10, 20, 30, 40, 50, 60, 70
	Incidence	(21)	±3						
Baum et al. (2013) ^{ac}	OAI Healthy	36 (11)	50 ±3	3T Siemens	Siemens 15-Ch Tx/Rx			Sag 2D MESE (0.3×0.4×3.0)	2700/10, 20, 30, 40, 50, 60, 70
	OAI Incidence	78 (33)	51 ±3						
Baum et al. (2012) ^{ac}	OAI Healthy	41 (15)	51 ±3	3T Siemens	Siemens 15-Ch Tx/Rx			Sag 2D MESE (0.3×0.4×3.0)	2700/10, 20, 30, 40, 50, 60, 70
	OAI Incidence	101 (50)	51 ±3						
Möstrom et al. (2015) ^c	Healthy Control	16 (9)	22 ±2	1.5T Philips	N/R			Sag 2D MESE (0.5×0.5×3.0)	2000/9, 18, 27, 36, 45, 54, 63, 72
	Patellar Dislocation	16 (9)	22 ±2						
Bining et al. (2009) ^c	Healthy Control	60 (N/ A)	38 ±14	1.5T GE	Signa HD Tx/Rx			Sag 2D MESE (0.6×0.6×4.0)	1000/8, 16, 24, 32, 40, 48, 56, 64
	Cartilage Lesions	24 (N/ A)	45 ±17						
Bolbos et al. (2008) ^c	Healthy Control	15 (11)	30 ±9	3T GE	Tx/Rx Quadrature Knee	Sag 3D SPGR (0.5×0.7×3.0)	0, 10, 40, 80/500		
	ACL Rupture	16 (11)	33 ±6						
Farrokhi et al. (2011) ^{bc}	Healthy Control	10 (0)	27 ±4	3T GE	GE 8-Ch Knee			Sag 2D MESE (0.4×0.8×4.0)	1800/20, 40, 60, 80
	PFP	10 (0)	28 ±4					[3 slices/SR]	
Gheno et al. (2016) ^c	Healthy Control ACLR	27 (22) 27	28 ±4 29	3T Philips	Invivo 8-Ch Tx/Rx			Sag 2D MESE (0.3×0.3×3.0)	3100/15, 30, 45, 60, 75, 90

Table 1 Description of studies included in the systematic review

Authors	Participants	n (n _{male})	Age	Scanner	Coil	T1p Sequence (resolution)	TSL (ms)/SL Frequency (Hz)	T2 Sequence (resolution)	TR/TE
Van Ginckel et al. (2013)	Healthy Control	15 (8)	27 ±3	3T Siemens	8-Ch Knee			Sag 2D MESE (0.4×0.4×3.0)	1000/14 28, 41, 55, 69
	ACLR	15 (8)	27 ±1						
Gupta et al. (2014) ^c	Healthy Control	10 (8)	35 ±6	3T GE	Tx/Rx Quadrature Knee	Sag 3D SPGR (0.5×1.1×4.0)	0, 10, 40, 80/500		
	ACL Injury	10 (5)	39 ±6			[3 slices/SR]			
Haughom et al. (2012) ^c	Healthy Control	11 (4)	33 ±9	3T GE	8-Ch Tx/Rx	Sag 3D SPGR (0.3×0.6×1.5)	0, 10, 40, 80/500		
	ACLR	11 (4)	33 ±9						
Hovis et al. (2011) ^{ac}	OAI Healthy	33 (8)	50 ±3	3T Siemens	N/R			Sag 2D MESE (0.3×0.4×3.0)	2700/10, 20, 30, 40, 50, 60, 70
	OAI Incidence	128 (57)	51 ±3						
Joseph et al. (2011) ^{ac}	OAI Healthy	53 (17)	50 ±3	3T Siemens	N/R			Sag 2D MESE (0.3×0.4×3.0)	2700/10, 20, 30, 40, 50, 60, 70
	OAI Incidence	93 (42)	51 ±3						
Kai et al. (2011) ^c	Healthy Control	143 (72)	40 ±13	1.5T Siemens	Signa HD 8-Ch Tx/Rx			Sag 2D MESE (0.6×0.6×4.0)	1000/8, 16, 24, 32, 40, 48, 56, 64
	Meniscal Lesions	57 (27)	41 ±13						
Kang et al. (2016) ^c	Healthy Control	53 (15)	16 ±2	1.5T GE	N/R			Sag 2D MESE (0.5×0.9×4.0)	1500/9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99
	PF Instability	53 (15)	16 ±2						
Lansdown et al. (2015) ^{bc}	Healthy Control	10 (4)	31 ±5	3T GE	Invivo 8-Ch Tx/Rx	Sag 3D MAPSS (0.6×0.6×3.0)	0, 10, 40, 80/500		
	ACLR	20 (8)	32 ±8						
Lau et al. (2016) ^c	Healthy Control	6 (3)	29	3T GE	Invivo 8-Ch Tx/Rx	2D FSE (0.3×0.6×1.5)	0, 10, 40, 80/500		
	PFP	10 (2)	32						
Liebl et al. (2015) ^a	OAI Healthy	80 (30)	58 ±8	3T Siemens	USA Instruments Tx/Rx			Sag 2D MESE (0.3×0.4×3.0)	2700/10, 20, 30, 40, 50, 60, 70
	OAI Incidence	50 (22)	60 ±8						
H. Li et al. (2013) ^c	Healthy Control	15 (15)	27 ±5	3T Siemens	N/R			Sag 2D MESE (0.4×0.4×3.0)	1523/14, 28, 41, 55, 69
	ACLR	30 (30)	29 ±5					[5 SIICES/SK]	
X. Li et al. (2011) ^{ac}	Healthy Control	10 (7)	34	3T GE	Quadrature Tx/Rx	Sag 3D SPGR (0.5×1.1×2.5)	20, 40. 60, 80/500	Sag 2D MESE (0.5×1.1×2.5)	2000/7, 12, 28, 60
	ACL Injured	12 (7)	34						
Matsubara et al. (2015) ^c	Healthy Control	19 (19)	39 ±7	3T Philips	8-Ch Tx/Rx	Sag 2D FFE (0.4×0.4×3.0)	1, 20, 40, 60, 80/500		
	Meniscal Tear	22 (15)	57 ±14			[3 SIICES/3R]			

Table 1 Description of studies included in the systematic review (Continued)

Authors	Participants	n (n _{male})	Age	Scanner	Coil	T1p Sequence (resolution)	TSL (ms)/SL Frequency (Hz)	T2 Sequence (resolution)	TR/TE	
Mosher et al. (2004)	18-30 y.o. Healthy	8 (0)	25 ±1	3T Bruker	Doty Scientific Litz			Sag 2D MESE (0.5×0.5×3.0)	1500/9, 18, 27, 36, 45, 54, 63, 72, 81, 90,	
	66-86 y.o. Healthy	7 (0)	75 ±7						99, 108	
Okazaki et al. (2015) ^c	Healthy Control	6 (N/ A)	32 ±2	3T Philips	8-Ch Tx/Rx	Sag 2D SPGR (0.4×0.4×3.0)	1, 20, 40, 60, 80/500			
	PCL Deficient	6 (N/ A)	17 ±6			[4 SIICes/ Sh]				
Osaki et al. (2015) ^c	Healthy Control	14 (14)	37 ±6	3T Philips	8-Ch Tx/Rx	Sag 2D SPGR (0.4×0.4×3.0)	1, 20, 40, 60, 80/500			
	ACL Injured	49 (30)	25 ±9			[3 slices/SR]				
Palmieri-Smith et al. (2016)	Healthy Control	11 (5)	20 ±5	3T Philips	N/R			Sag 2D MESE (0.5×0.5×2.0)	1000/8, 16, 24, 32, 40, 48, 56, 64	
	ACL Injured	11 (5)	19 ±6							
Pedoia et al. (2015) ^c	Healthy Control	15 (N/ A)	32 ±5	3T GE	Invivo 8-Ch Tx/Rx	Sag 3D MAPSS (0.5×1.1×4.0)	0, 10, 40, 80/500			
	ACL Injured	40 (N/ A)	30 ±8							
Pedoia et al. (2016) ^c	Healthy Control	10 (5)	32 ±4	3T GE	Invivo 8-Ch Tx/Rx	Sag 3D MAPSS (0.5×1.1×4.0)	0, 10, 40, 80/500			
	ACL Injured	52 (21)	28 ±12							
Pedoia et al. (2017) ^c	Healthy Control	15 (10)	31 ±5	3T GE	Invivo 8-Ch Tx/Rx	Sag 3D MAPSS (0.5×1.1×4.0)	0, 10, 40, 80/500	Sag 3D MAPSS (0.5×1.1×4.0)	4000/0, 14, 27, 55	
	ACL Injured	40 (25)	30 ±8							
Rehnitz et al. (2014) ^c	Healthy Control	10 (N/ A)	25	3T Siemens	Siemens 15-Ch Tx/Rx			Sag 2D MESE (0.4×0.4×3.0)	1940/12, 24, 35, 47, 59, 71, 83, 94, 106,	
	Cartilage Lesions	40 (N/ A)	47					[3 slices/SR]	118, 130, 142, 153	
Russell et al. (2017) ^c	Healthy Control	15 (6)	57 ±9	3T GE	Invivo 8-Ch Tx/Rx	Sag 2D SPGR (0.5×1.1×4.0)	0, 2, 4, 6, 8, 12, 20,	Sag 2D MESE (0.5×1.1×4.0)	4000/0, 2, 4, 7, 15, 29, 44, 58	
	Cartilage Lesions	15 (6)	56 ±8				40, 80/500			
Sauerschnig et al. (2014) ^c	Neutral	12 (4)	25 ±2	1.5T Siemens	Medical Advances 8-Ch			Sag 2D MESE (0.4×0.5×1.0)	1690/10, 20, 30, 40, 50, 60	
	Varus Alignment	12 (10)	26 ±1							
	ACLR	40 (26)	35 ±8							
Snoj et al. (2016) ^{bc}	Healthy Controls	20 (11)	33 ±7	3T Siemens	Invivo 8-Ch Tx/Rx			Sag 2D MESE (0.4×0.4×3.0)	1000/14, 28, 41, 55, 69, 83	
	ACLR	40 (26)	35 +8					[2 slices/SR]		
Subhawong et al. (2014) ^c	Healthy Control	28 (17)	 31 ±10	3T Siemens	N/R			Sag 2D MESE (N/A) [1 slice/SR]	1650/13, 26, 39, 52, 65, 77	
	PFP	22 (8)	34 ±13							

Table 1 Description of studies included in the systematic review (Continued)

Authors	Participants	n (n _{male})	Age	Scanner	Coil	T1p Sequence (resolution)	TSL (ms)/SL Frequency (Hz)	T2 Sequence (resolution)	TR/TE	
Su et al. (2013) ^c	Healthy Control	16 (8)	33	3T GE	Clinical MR Solutions Tx/Rx Quadrature	Cor 3D SPGR (0.5×0.7×4.0)	0, 10, 40, 80/500	Sag 3D SPGR (0.5×0.7×4.0)	2000/4, 15, 25, 46	
	ACL Injured	15 (7)	35							
Su et al. (2016) ^c	Healthy Control	54 (31)	30 ±8	3T GE	Clinical MR Solutions Tx/Rx Quadrature	Cor 3D SPGR (0.5×0.7×4.0)	0, 10, 40, 80/500	Sag 3D SPGR (0.5×0.7×4.0)	2000/4, 15, 25, 46	
	ACL Injured	54 31(31)	30 ±8							
Theologis et al. (2014) ^{bc}	Healthy Control	18 (8)	38 ±8	3T GE	Clinical MR Solutions Tx/Rx Quadrature	Sag 3D SPGR (0.5×0.7×4.0)	0, 10, 40, 80/500			
	ACLR	18 (8)	38 ±8							
Thuiller et al. (2013) ^c	Healthy Control	10 (4)	31 ±3	3T GE	Invivo 8-Ch Tx/Rx	2D FSE (0.3×0.6×1.5)	0, 10, 40, 80/500			
	PFP	20 (10)	31 ±5							
Wirth et al. (2016) ^{ac}	Healthy Control	89 (36)	55 ±8	3T Siemens	Siemens 15-Ch Tx/Rx			Sag 2D MESE (0.3×0.3×3.0)	2700/10, 20, 30, 40, 50, 60, 70	
	Risk for OA	28 (14)	61 ±9							
Witschey et al. (2010)	Healthy Controls	9 (2)	N/R	1.5T Siemens	Invivo 8-Ch Tx/Rx	3D GRE (0.5×0.6×0.5)				
	Cartilage Lesions	6 (3)	N/R							
Xu et al. (2011)	Healthy Controls	30 (18)	25	3T Philips	SENSE 8-Ch			Sag 2D MESE (0.5×0.3×3.0)	2400/15, 30, 45, 60, 75, 90	
	Cartilage Injury	42 (25)	37							
Zaid et al. (2015) ^{bc}	Healthy Controls	25 (12)	28 ±7	3T GE	Invivo 8-Ch Tx/Rx	Sag 3D SPGR (0.5×1.1×4.0)				
	ACLR	25 (12)	28 ±7							
Kim et al. (2018) ^{bc}	Healthy Control	10 (7)	34 ±8	3T Siemens	Siemens 8-Ch			Sag 2D MESE (0.5×0.5×3.0)	1700/11, 21, 32, 42, 53, 64, 72, 85,	
	ACLR	10 (7)	34 ±8					[2 silces/ shj	93, 100	
Kogan et al. (2018) ^c	Healthy Control	15 (10)	33 ±11	3T GE	NeoCoil 16-Ch Tx/Rx Flex			3D DESS (0.5×0.5×1.5)	24.6/5.8, 43.4	
	ACL Injured	15 (10)	33 ±11							
Mostrom et al. (2017) ^c	Healthy Control	17 (5)	25 ±3	1.5T Philips	N/R			Sag 2D MESE (0.5×0.5×3.0)	2000/9, 18, 27, 36, 45, 54, 63, 72	
	PF Instability	17 (5)	25 ±3							
Pfeiffer et al. (2017) ^{abc}	Healthy Control	21 (11)	24 ±3	3T Siemens	Siemens XR 80/200 Gradient Coil	3D FLASH (1.8×0.9×3.0)	0, 10, 20, 30, 40/500			
	ACLR	21 (11)	24 ±3							
Pietrosimone et al. (2017) ^{bc}	Healthy Control	18 (8)	22 ±4	3T Siemens	Siemens 4-Ch Flex Coil	3D FLASH (0.6×1.3×3.0)	0, 10, 20, 30, 40/500			
	ACLR	18 (8)	22 ±4							

Table 1 Description of studies included in the systematic review (Continued)

Authors Participants Age Scanner Coil T1p Sequence TSL (ms)/SL T2 Sequence TR/TE n (resolution) Frequency (resolution) (n_{male}) (Hz) Tao et al. 29 3T Siemens 8-Ch Tx/Rx Sag 2D MESE 1523/13.8, 27.6, 41.4, Healthy 23 (7) $(2018)^{\circ}$ +8 Siemens $(0.4 \times 0.4 \times 3.0)$ 55.2, 69.0 Control ACL 23 (5) 32 ± 10 Rupture Teng et al. Healthy 12 (8) 32 3T GF Invivo 8-Ch Tx/Rx Sag 3D MAPSS 0, 10, 40, Sag 3D MAPSS 0, 14, 27, 55 (2017)^c (0.5×1.1×4.0) 80/500 (0.5×1.1×4.0) Control ±6 ACL 33 31 Rupture (20)±9 Wang et al. Healthy 9 (4) 26 Siemens 8-Ch Sag 2D MESE 1200/14, 28, 41, 55, 69 3T $(2018)^{\circ}$ +5Siemens $(0.4 \times 0.4 \times 3.0)$ Control [3/5/10 slices/SR] ACLR 30 28 (17)+6 Collins et al. Sag 3D FISP Normal BMI 8 (5) 30 3T Invivo 8-Ch Tx/Rx 3500/5.10. (2018)^b (1.1×0.5×3.0) 40, 80/500 Siemens 7 (3) 32 Obese BMI

Table 1 Description of studies included in the systematic review (Continued)

ms milliseconds, SL spin lock, Hz Hertz, TR Repetition time, TE echo time, ACL anterior cruciate ligament, ACLR ACL reconstruction, GE General Electric, MAPSS magnetization-prepared spoiled gradient echo, SR subregion, PF patellofemoral, PFP patellofemoral pain, FFE fast field echo, FSE fast spin echo, ICRS International Cartilage Rating Scale, Ch channel, Sag sagittal, Cor coronal, Ax axial, MESE multi-echo spin echo, OAI Osteoarthritis Initiative, Tx transmit, Rx receive, N/R not reported, SPGR spoiled gradient recalled echo, FISP fast imaging with steady state precession

^amulticenter study ^buse of pre-scan unloading protocol

^cindicates post-processing methods that could be used in any dataset

in its ability to identify publication bias in heterogeneous datasets where no true bias exists [95]. Thus there may be no significant publication bias for the heterogeneous SMD's of T1 ρ in the MF and LT compartments.

Sensitivity analyses

We performed two sensitivity analyses. The first analysis excluded all but one study (6 articles excluded) using OAI data to ensure no subjects in the meta-analyses were used more than once. Effect sizes remained moderate and significant in all compartments (SMD = 0.38-0.73; p < 0.02). The second analysis excluded all studies which used within-patient comparisons (healthy knee versus at-risk knee). Following exclusion of articles (6 articles for T2, 6 for T1 ρ), effect sizes remained moderate-to-large for T2 (all compartments: SMD = 0.42–0.83; p < 0.1), and remained moderate for some T1 ρ compartments (MF, MT, LF: SMD = 0.27-0.37; p < 0.02) and remained small and non-significant for others (LT, P, TrF: SMD = 0.13-0.14; p > 0.29. Detailed results of sensitivity analyses can be found in Additional file 1: Appendix 3.

Subgroup analyses

We performed three subgroup analyses to determine respective effect sizes for patients with ACL injury, risk for patellofemoral OA, and articular cartilage lesions. Results of the subgroup analyses suggested that SMDs controls were small-to-moderate for the ACL-injury subgroup compared to controls (14 articles for T2: SMD = 0.13–0.56; p = 0.002-0.27. 14 articles for T1p: SMD = -0.11–0.30; p = 0.001-0.8). We obtained similar small-to-moderate effect sizes for the patellofemoral OA risk subgroup (8 articles for T2: SMD = 0.06–0.20; p =0.004–0.78. 3 articles for T1p: SMD = -0.13–0.28; p =0.06–0.89). These effect sizes were generally smaller compared to the remainder of the sample in the primary analysis. The articular cartilage injury subgroup demonstrated large effect sizes (4 articles for T2: SMD = 1.29– 2.88; p = 0.001-0.38) which were larger in comparison to the remainder of the sample in the primary analysis. Detailed results of subgroups analyses can be found in Additional file 1: Appendix 4.

Discussion

The present pooled within-study effect sizes that combine data from 47 studies involving 3661 participants suggest T2 and T1 ρ relaxation times distinguish between healthy participants and participants at risk for knee OA. The present results are consistent with the only other published systematic review we are aware of [23], yet extends its findings by focusing on persons at-risk for but without radiographic knee OA, and by providing a thorough summary of the variable T2 and T1 ρ collection, processing, and analysis methods. Strengths of the present study include adherence to well-established guidelines for conducting systematic reviews and meta-analyses [35]. These include multiple reviewers reaching consensus at each step of the literature search,

	Healthy / At Risk	Comparison	Scanner	Strength	SMD (95% CI); p	% Weight	HEALTHY AT RISK FOR KNEE OA
T1rho Relaxation Time							
Bolbos et al. (2008)	15/16	ACL Injury	GE	3.0T	0.10 (-0.61, 0.80); 0.787	5.59	
X Li et al. (2010)	10712	ACL Injury	GE	3.01	0.37 (-0.74, 1.22); 0.388	4.37	
raugnom et al. (2012) Su at al. (2013)	11/11	ACL mjury	CE	3.01	0.80 (-0.07, 1.67); 0.071	4.21	
Su et al. (2013) Theologis et al. (2014)	16/15	ACL Reconstruction	GE	3.01	0.39 (-0.32, 1.10); 0.28	5.53	
Okeenis et al. (2014)	18/18	ACL Reconstruction	Dhiling	3.01 2.0T	1.14 (0.00, 2.26); 0.068	0.05	
Okazaki et al. (2015)	6/6	PCL Deticient	Philips	3.01	1.14 (-0.09, 2.36); 0.068	2.48	
Zaid et al. (2015)	25/25	ACL Reconstruction	GE	3.01	0.25 (-0.31, 0.80); 0.387	7.34	
Matsubara et al. (2015)	19722	Medial Meniscal Tear	Philips	3.01	0.88 (0.24, 1.52); 0.007	6.26	
Osaki et al. (2015)	14/49	ACL Injury	Philips	3.01	0.24 (-0.36, 0.83); 0.436	6.83	
Pedoia et al. (2016)	15740	ACL Injury	GE	3.01	0.92 (0.30, 1.53); 0.004	6.55	
Su et al. (2016)	54/54	ACL Injury	GE	3.01	0.00 (-0.38, 0.38); 1.000	10.18	
Van der Heijden et al. (2016)	10/64	Patenoremoral Pain	GE	3.01	0.02 (-0.32, 0.36); 0.893	10.87	
Pedola et al. (2017)	21/21	ACL Injury	Ciamana	3.01	0.66 (0.05, 1.30); 0.067	5.59	
Pietrosimono et al. (2017)	21/21	ACL Reconstruction	Siemens	3.01	0.08 (0.03, 1.30); 0.035	5.50	
Teng et al. (2017)	18/18	ACL Reconstruction	GE	3.01 3.0T	-0.43 (-1.10, 0.24); 0.208	5.09	
reng et an (aor)	10100	,100 IIJaiy	0.0	0101		0177	
Random Effects Model (n=778):	: z=3.74; Test for Heter	ogeneity: I ² =44.3%, p=0.029			0.40 (0.19, 0.61); <0.001		•
T2 Relaxation Time	60.124	(1			0.77 (0.00 1.00) 0.000	4.22	
Bining et al. (2008)	58/24	Chondral Damage	GE	1.675	0.77 (0.28, 1.26); 0.002	4.22	
X Li et al. (2010)	10712	ACL Injury	GE	1.51	0.14 (-0.70, 0.98); 0.752	3.04	
Apprich et al. (2010)	14/5	ICRS Grade 1	Siemens	3.01	0.32 (-0.70, 1.35); 0.539	2.52	
Xu et al. (2011)	30/42	Cartilage Injury	Philips	3.01	3.25 (2.54, 3.96); <0.001	3.46	
Hovis et al. (2011)	33/128	OAI Incidence	Siemens	3.0T	0.55 (0.16, 0.94); 0.005	4.56	
Kai et al. (2011)	65/57	Meniscus Grade 1-2	GE	3.0T	0.30 (-0.05, 0.66); 0.096	4.65	
Baum et al. (2012)	42/42	Unilateral Symptoms	Siemens	1.5T	0.96 (0.51, 1.41); <0.001	4.35	
Baum et al. (2012)	41/101	OAI Incidence	Siemens	3.0T	0.44 (0.07, 0.80); 0.020	4.63	
Baum et al. (2013)	36 / 78	OAI Incidence, BMI <25	Siemens	3.0T	0.46 (0.06, 0.85); 0.026	4.52	
Joseph et al. (2013)	53/93	OAI Incidence	Siemens	3.0T	0.37 (0.03, 0.71); 0.032	4.71	
Sauerschnig et al. (2013)	12/12	Mild Varus	Siemens	3.0T	0.28 (-0.52, 1.09); 0.493	3.15	
Su et al. (2013)	16/15	ACL Reconstruction	GE	1.5T	0.56 (-0.16, 1.28); 0.127	3.43	
Van Ginckel et al. (2013)	15 / 15	ACL Reconstruction	Siemens	3.0T	0.96 (0.21, 1.71); 0.013	3.31	
Subhawong et al. (2014)	28/22	Patellofemoral Pain	Siemens	3.0T	0.50 (-0.07, 1.07); 0.084	3.95	
Liebl et al. (2015)	80 / 50	OAI Incidence	Siemens	3.0T	0.49 (0.13, 0.85); 0.007	4.65	
H Li et al. (2015)	15/30	ACL Reconstruction	Siemens	3.0T	2.78 (1.92, 3.61); <0.001	3.03	
Bae et al. (2015)	10/10	ACL Reconstruction	Siemens	3.0T	0 69 (-0.21, 1.59); 0.136	2.86	
Van der Heijden et al. (2016)	70 / 64	Patellofemoral Pain	GE	3.0T	-0.05 (-0.39, 0.29); 0.770	4.71	
Gheno et al. (2016)	27 / 27	ACL Reconstruction	Philips	3.0T	0.06 (-0.47, 0.60); 0.818	4.07	
Palmieri-Smith et al. (2016)	11/11	ACL Injury	Philips	3.0T	0.29 (-0.55, 1.13); 0.503	3.04	
Su et al. (2016)	54 / 54	ACL Injury	GE	3.0T	0.08 (-0.29, 0.46); 0.666	4.59	- - -
Wirth et al. (2016)	89 / 28	At risk for OA	Siemens	3.0T	0.55 (0.12, 0.98); 0.013	4.42	
Teng et al. (2017)	12/33	ACL Injury	GE	3.0T	-0.27 (-0.94, 0.39); 0.422	3.62	
Kogan et al. (2018)	15/15	ACL Reconstruction	GE	3.0T	0.48 (-0.24, 1.21); 0.193	3.40	
Tao et al. (2018)	23 / 23	ACL Injury	Siemens	3.0T	0.61 (0.02, 1.20); 0.044	3.87	
Wang et al. (2018)	9 / 28	ACL Reconstruction	Siemens	3.0T	0.81 (0.04, 1.58); 0.040	3.25	
							1
Pandom Effects Model (n=1 88	7), z=5 10, Tost for Hot	orogonaitu 12-70 0%, p.40 00			0.60 (0.37, 0.82); <0.001		
Random Effects Model (n=1,887	7): z=5.19; Test for Het	erogeneity: 1 ² =79.0%, p<0.00	1		0.60 (0.37, 0.82); <0.001		\$
Random Effects Model (n=1,887	7): z=5.19; Test for Het	erogeneity: 1 ² =79.0%, p<0.00	1		0.60 (0.37, 0.82); <0.001		
Random Effects Model (n=1,887	7): z=5.19; Test for Het	erogeneity: I ² =79.0%, p<0.00	1		0.60 (0.37, 0.82); <0.001		
Random Effects Model (n=1,887	7): z=5.19; Test for Het	erogeneity: 1 ² =79.0%, p<0.00	1		0.60 (0.37, 0.82); <0.001		-2 -1 0 1 2 3 4
Random Effects Model (n=1,887	7): z=5.19; Test for Het	erogeneity: I ² =79.0%, p<0.00	1		0.60 (0.37, 0.82); <0.001		-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887	7): z=5.19; Test for Het	erogeneity: 1 ² =79.0%, p<0.00	I		0.60 (0.37, 0.82); <0.001		-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA	7): z=5.19; Test for Het	erogeneity: 1 ² =79.0%, p<0.00	1		0.60 (0.37, 0.82); <0.001		-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA Tiebo Robustion Time	7): z=5.19; Test for Het Healthy / At Risk	erogeneity: 1²=79.0%, p<0.00 Comparison	I Scanner	Strength	0.60 (0.37, 0.82); ≺0.001 SMD (95% CI); p	% Weight	-2 -1 0 1 2 3 4 SMD (95% C1)
Random Effects Model (n=1,883 b MEDIAL TIBIA TIrho Relaxation Time Bolbos et al. (2009)	7); z=5.19; Test for Het Healthy / At Risk	erogeneity: 1²=79.0%, p<0.00 Comparison ACL Iniury	1 Scanner CIF	Strength	0.60 (0.37, 0.82); <0.001 SMD (95% CI); p 0.25 (.0.10, 0.45°, 0.48°)	% Weight	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TIPho Relaxation Time Bolbos et al. (2008) Video I d. (2008)	7); z=5,19; Test for Het Healthy / At Risk 15 / 16	erogeneity: 1 ² =79.0%, p<0.00 Comparison ACL Injury	1 Scanner GE	Strength 3.0T	0.60 (0.37, 0.82); <0.001 SMD (95% CD; p -0.25 (0.10, 0.45; 0.482 0.07 (≤ 0.20, 0.09); 0.800	% Weight 5.66	-2 -1 0 1 2 3 4 SMD (95% C1)
Random Effects Model (n=1,887 b MEDIAL TIBIA Tirbs Relaxation Time Bollos et al. (2010) X Li et al. (2010) Mineron 20 (2012)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12	erogeneity: 1 ² =79.0%, p<0.00 Comparison ACL Injury ACL Injury	1 Scanner GE GE CE	Strength 3.0T 3.0T	0.60 (0.37, 0.82); <0.001 SMD (95% CD; p -0.25 (-0.10, 0.45); -0.482 0.06 (-0.78, 0.90); -0.889 0.06 (-0.78, 0.90); -0.889	% Weight 5.66 4.32	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TIrho Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughon et al. (2012) Expand (2012)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11	erogeneity: 12=79.0%, p=0.00 Comparison ACL Injury ACL Injury ACL Injury	l Scanner GE GE GE CE	Strength 3.0T 3.0T 3.0T	0.60 (0.37, 0.82); <0.001 SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.90); 0.889 0.00 (-0.84, 0.84); 1.000 0.01 (-0.84, 0.84); 1.000	% Weight 5.66 4.32 4.36 5.60	-2 -1 0 1 2 3 4 SMD (95% C1)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-the Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughom et al. (2012) So et al. (2013)	7): z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 19 / 19	erogeneity: 12=79.0%, p=0.00 Comparison ACL Injury ACL Injury ACL Injury ACL Reconstruction	1 Scanner GE GE GE GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T	8.60 (0.37, 0.82); <0.001 SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.96); 0.889 0.06 (-0.84, 0.84); 1.000 0.01 (-0.59, 0.82); 0.752	% Weight 5.66 4.32 4.36 5.69	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TIrbo Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughon et al. (2012) Theologis et al. (2014) Theologis et al. (2014)	7): z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18	erogeneity: 12=79.0%, p=0.00 Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction	Scanner GE GE GE GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CD; p -0.25 (-0.10, 0.45; 0.482 0.06 (-0.78, 0.90); 0.889 0.00 (-0.84, 0.84; 1.000 0.11 (-0.59, 0.82); 0.72 0.28 (-0.40, 0.93); 0.408	% Weight 5.66 4.32 4.36 5.69 6.33	-2 -1 0 1 2 3 4 SMD (95% C1)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-Do Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughom et al. (2012) Su et al. (2013) Theologis et al. (2014) Okazaki et al. (2015)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6	conparison Comparison ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction	Scanner GE GE GE GE Fhilips	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.90); 0.889 0.06 (-0.84, 0.484); 1.000 0.11 (-0.59, 0.82); 0.752 0.28 (-0.40, 0.93); 0.408 1.18 (-0.05, 2.49); 0.060	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 2.75	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TIrho Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughom et al. (2014) Theologis et al. (2015) Zaid et al. (2015) Zaid et al. (2015)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 2 / 25 2 / 25	comparison Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction PCL Deficient ACL Reconstruction	Scanner GE GE GE GE Philips GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% Cl); p -0.25 (-0.10, 0.45; 0.482 0.06 (-0.78, 0.99); 0.889 0.00 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.82); 0.72 0.28 (-0.40, 0.93); 0.408 1.18 (-0.05, 2.40); 0.064 1.18 (-0.05, 2.40); 0.064	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-ho Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughon et al. (2012) Su et al. (2013) Theologis et al. (2014) Okazaki et al. (2015) Zaid et al. (2015) Landown et al. (2015)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20	conparison ACL Injury ACL Injury ACL Injury ACL Reconstruction PCL Deficient ACL Reconstruction PCL Deficient ACL Reconstruction	Scanner GE GE GE GE Philips GE GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.84); 1.00 0.11 (-0.59, 0.82); 0.752 0.28 (-0.40, 0.93); 0.408 1.18 (-0.05, 2.46); 0.050 -0.58 (-1.15, -0.02); 0.044 0.87 (-0.08, 1.66); 0.011	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 4.76	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TIrho Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughom et al. (2015) So et al. (2015) Zaid et al. (2015) Zaid et al. (2015) Landown et al. (2015) Detained to WTC for Network for for Network for Netw	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 10 / 22 10 / 22	comparison Comparison ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Media Meniscal Tear	I Scanner GE GE GE GE GE GE GE Fhilips GE GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% C1); p -0.25 (-0.10, 0.45; 0.482 0.06 (-0.78, 0.99); 0.889 0.00 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.82); 0.72 0.28 (-0.40, 0.93); 0.408 1.18 (-0.05, 2.40); 0.064 0.88 (-1.15, -0.02); 0.044 0.87 (10.08, 1.66); 0.014 0.61 (-0.02, 1.22); 0.058 0.011 (-0.58)	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 6.75	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-ho Relaxation Time Bolbos et al. (2008) X Li et al. (2019) Theologis et al. (2012) Sis et al. (2015) Cald et al. (2015) Calador al. (2015) Massidara et al. (2015) Obaki et al. (2015)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49	Comparison ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury	I Scanner GE GE GE GE Philips Philips Philips	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.90); 0.889 0.00 (-0.84, 0.84); 1.00 0.11 (-0.59, 0.83); 0.752 0.28 (-0.40, 0.93); 0.408 1.18 (-0.05, 2.40); 0.060 -0.58 (-115, -0.02); 0.044 0.87 (0.08, 1.66); 0.031 0.61 (-0.02, 1.23); 0.058 0.01 (-0.39, 0.660); 0.933	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.29	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TIrho Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughom et al. (2015) So et al. (2015) Zaid et al. (2015) Landown et al. (2015) Matsubara et al. (2015) Matsubara et al. (2015) Doaki et al. (2015) Doaki et al. (2015) Podios et al. (2015) Podios et al. (2015)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40	comparison Comparison ACL Injury ACL Injury ACL Injury ACL Roginy ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury	I Scanner GE GE GE GE Philips Philips GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% C1); p -0.25 (-0.10, 0.45; 0.482) 0.06 (-0.78, 0.99); 0.889 0.00 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.82); 0.72; 0.28 (-0.40, 0.93); 0.408 1.18 (-0.05, 2.40); 0.064 0.88 (-1.15, -0.02); 0.044 0.87 (10.08, 1.66); 0.031 0.61 (-0.02, 1.23); 0.058 0.01 (-0.59, 0.66); 0.983 0.03 (-0.23, 0.99); 0.234	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TIrho Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughom et al. (2012) Su et al. (2015) Ead et al. (2015) Zaid et al. (2015) Lansdown et al. (2015) Osaki et al. (2015) Osaki et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Su et al. (2016) Su et al. (2016) Su et al. (2016)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 40 5 / 40 5 / 45	conparison Comparison ACL Injury ACL Injury ACL Reconstruction PCL Deficient ACL Reconstruction PCL Deficient ACL Reconstruction PCL Deficient ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Injury	I Scanner GE GE GE GE Philips GE GE GE GE GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.84); 1.006 0.11 (-0.59, 0.82); 0.752 0.28 (-0.40, 0.93); 0.406 1.18 (-0.05, 2.46); 0.066 0.58 (-1.15, -0.02); 0.044 0.58 (-1.15, -0.02); 0.044 0.58 (-0.25, 0.061) 0.61 (-0.05, 1.06); 0.081 0.051 (-0.25, 0.061) 0.051 (-0.25, 0.061); 0.983 0.36 (-0.25, 0.061); 0.234 -0.10 (-0.48, 0.25); 0.604	% Weight 5.66 4.32 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 7.23 12.35	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TIrho Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughom et al. (2012) Su et al. (2015) Ead et al. (2015) Zaid et al. (2015) Landsven et al. (2015) Deaki et al. (2015) Pedoia et al. (2016) Su et al. (2016) Su et al. (2016) Pedoia et al. (2017)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 5 4 / 54 10 / 40	Comparison ACL Injury ACL Injury ACL Injury ACL Rogens ACL Rogens ACL Rogens ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Media Meniscal Tear ACL Injury ACL Injury ACL Injury ACL Injury	I Scanner GE GE GE GE Philips GE Philips GE Philips GE GE Philips GE GE CE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.90); 0.889 0.00 (-0.78, 0.90); 0.889 0.00 (-0.38, 0.84); 1.000 0.11 (-0.59, 0.82); 0.752 0.28 (-0.40, 0.93); 0.408 1.18 (-0.05, 2.40); 0.064 0.58 (-1.15, -0.02); 0.044 0.877 (0.08, 1.66); 0.031 0.61 (-0.02, 1.23); 0.058 0.01 (-0.58, 0.66); 0.038 0.03 (-0.23, 0.96); 0.234 -0.10 (-0.48, 0.28); 0.2604 0.30 (-0.40, 0.99); 0.401	% Weight 5.66 4.32 4.36 6.33 2.25 7.78 4.76 6.75 7.29 7.23 7.23 5.81	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TIrho Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughon et al. (2012) Sa et al. (2013) Theologis et al. (2014) Okazaki et al. (2015) Zaid et al. (2015) Zaid et al. (2015) Matsubara et al. (2015) Osaki et al. (2015) Pediai et al. (2016) Sa et al. (2016) Sa et al. (2017) Pediai et al. (2017)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 6 / 6 6 / 6 10 / 20 19 / 22 14 / 40 15 / 40 54 / 54 10 / 40 21 / 21	Comparison Comparison ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury	I Scanner GE GE GE GE GE Philips GE GE GE GE GE GE GE GE GE GE GE Siemens	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.84); 1.006 0.11 (-0.59, 0.82); 0.060 0.11 (-0.59, 0.82); 0.060 1.18 (-0.05; 2.40); 0.060 0.58 (-11, 5-002); 0.044 0.57 (10.8, 1.66); 0.031 0.61 (-0.02, 1.23); 0.060 0.01 (-0.59, 0.66); 0.933 0.36 (-0.23, 0.99; 0.234 0.01 (-0.48, 0.22); 0.640 0.30 (-0.44, 0.22); 0.640 0.30 (-0.40, 0.99); 0.401 0.47 (-0.15, 1.08); 0.134	% Weight 5.66 4.32 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA Tirho Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughon et al. (2012) Su et al. (2015) Zaid et al. (2015) Zaid et al. (2015) Matsubar et al. (2015) Pedoia et al. (2017) Péritime et al. (2017)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 5 / 40 5 / 40 10 / 40 21 / 21 21 / 21 18 / 18	Comparison Comparison ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Injury	I Scanner GE GE GE GE Philips GE GE GE GE GE GE GE GE Siemens Siemens	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CD; p -0.25 (-0.10, 0.45); -0.482 0.06 (-0.78, 0.99); -0.889 0.00 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.82); 0.752 0.28 (-0.40, 0.93); -0.408 1.18 (-0.05, 2.40); -0.064 0.88 (-1.15, -0.02); 0.044 0.87 (-0.08, 1.66); 0.031 0.61 (-0.02, 1.23); 0.058 0.01 (-0.35, 0.66); 0.038 0.01 (-0.35, 0.66); 0.038 0.03 (-0.23, 0.96); 0.234 -0.10 (-0.46, 0.23); 0.610 0.35 (-0.40, 0.99); 0.401 0.47 (-0.15, 1.03; 0.134 0.51 (-0.117); 0.135	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97 6.22	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TIrho Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughom et al. (2013) Theologis et al. (2013) Theologis et al. (2015) Zaid et al. (2015) Zaid et al. (2015) Masubara et al. (2015) Masubara et al. (2015) Social et al. (2015) Pochia et al. (2015) Pochia et al. (2015) Pedia et al. (2016) Su et al. (2017) Pietriform et al. (2017) Pietrosimone et al. (2017)	7); zz5,19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 16 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 33 / 18 12 / 33	Comparison Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury	I Scanner GE GE GE GE Philips Philips Philips Philips Philips GE GE GE GE GE GE GE Sienrens Sienrens GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.83); 1.008 0.11 (-0.59, 0.83); 0.060 0.11 (-0.59, 0.83); 0.060 0.58 (-1.15, -0.02); 0.044 0.87 (0.08, 1.66); 0.031 0.61 (-0.02, 1.23); 0.058 0.01 (-0.59, 0.66); 0.983 0.33 (-0.21, 0.99); 0.041 0.33 (-0.40, 0.99); 0.041 0.33 (-0.40, 0.99); 0.041 0.35 (-1.15, 1.05); 0.134 0.51 (-0.15, 1.05); 0.134 0.51 (-0.16, 1.17); 0.134 0.51 (-0.16, 1.07); 0.136	% Weight 5.66 4.32 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97 6.22 6.23	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI tho Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughom et al. (2012) Su et al. (2013) Theologis et al. (2014) Okazaki et al. (2015) Lansdown et al. (2015) Lansdown et al. (2015) Mastubara et al. (2015) Osaki et al. (2015) Pedioia et al. (2015) Pedioia et al. (2017) Pietrosimone et al. (2017) Pietrosimone et al. (2017) Teng et al. (2017) Random Effects Model (n=674)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 8 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 40 15 / 40 15 / 40 15 / 40 21 / 21 18 / 18 12 / 3 2 ; z=1.93; Test for Heter	Comparison ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Injury ACL IN ACL IN	I Scanner GE GE GE GE Philips Philips Philips GE GE GE GE GE GE Siemens Siemens GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.84); 1.006 0.11 (-0.59, 0.82); 0.060 0.11 (-0.59, 0.82); 0.060 1.18 (-0.05, 2.40); 0.060 0.58 (-1.15, -0.02); 0.044 0.57 (0.08, 1.66); 0.031 0.61 (-0.02, 1.23); 0.050 0.01 (-0.59, 0.66); 0.983 0.36 (-0.23, 0.96); 0.234 0.30 (-0.48, 0.22); 6.604 0.30 (-0.48, 0.22); 6.605 0.30 (-0.37, 0.965; 0.34) 0.30 (-0.37, 0.965; 0.34)	% Weight 5.66 4.32 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97 6.22 6.23	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-ba Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Hangbone et al. (2012) Sa et al. (2013) Theologis et al. (2014) Okazaki et al. (2015) Zaid et al. (2015) Landsown et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2017) Pediois et al. (2017) Pietrosinone et al. (2017)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 15 / 40 24 / 54 10 / 40 24 / 54 10 / 40 21 / 21 18 / 18 18 / 18 12 / 33 22 / 33	Comparison ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Injury	I Scanner GE GE GE GE Philips GE Philips GE GE GE GE GE Siemens GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.83); 0.054 1.18 (-0.05, 2.46); 0.051 0.65 (-0.02); 0.044 0.87 (-0.08, 1.66); 0.031 0.61 (-0.02, 1.23); 0.054 0.01 (-0.59, 0.660); 0.931 0.36 (-0.23, 0.96); 0.234 0.03 (-0.48, 0.23); 0.64 0.35 (-0.15, 1.05); 0.134 0.51 (-0.16, 1.17); 0.136 0.30 (-0.37, 0.96); 0.381 0.31 (-0.04, 0.38); 0.054	% Weight 5.66 4.32 5.69 6.33 2.25 7.78 4.76 6.75 7.23 7.23 7.23 5.81 6.97 6.22 6.23	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TIrho Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughom et al. (2012) Su et al. (2013) Su et al. (2015) Eadde at al. (2015) Eadde at al. (2015) Pedoia et al. (2017) Pferférre al. (2017) Pferférre at al. (2017) Teng et al. (2017) Random Effects Model (n=674): T2 Relaxation Time Binine et al. (2008)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 19 / 22 14 / 49 15 / 40 15 / 40 15 / 40 15 / 40 21 / 21 18 / 18 12 / 33 ; z=1.93; Test for Heter 58 / 19	Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Injury	I Scanner GE GE GE GE Philips GE GE GE GE Siemens GE Siemens GE	Strength 3.0T 3.	SMD (95% CD; p -0.25 (-0.10, 0.45); -0.482 0.06 (-0.78, 0.90); 0.889 0.00 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.82); 0.752 0.28 (-0.40, 0.93); 0.408 1.18 (-0.05, 2.40); 0.064 0.18 (-0.05, 2.40); 0.064 0.18 (-0.05, 2.40); 0.064 0.01 (-0.39, 0.66); 0.034 0.01 (-0.39, 0.66); 0.038 0.01 (-0.19, 0.038; 0.054 0.01 (-0.01, 0.38); 0.054	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97 6.22 6.23	-2 -1 0 1 2 3 4 SMD (95% C1)
Random Effects Model (n=1,887 b MEDIAL TIBIA Triba Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughom et al. (2012) Sus et al. (2013) Theologis et al. (2014) Okazaki et al. (2015) Zaid et al. (2015) Coaki et al. (2015) Pedoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2017) Pedoia et al. (2017) Pietrosinone et al. (2017) Pietrosinone et al. (2017) Teng et al. (2017) Random Effects Model (n=674): Z1 Relaxation Time Bining et al. (2005)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 13 / 18 18 / 18 12 / 33 ; z=1.93; Test for Heter 58 / 19 10 / 12	comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Reinjury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Injury ACL INTA INTA INTA INTA INTA INTA INTA INTA	L Scanner GE GE GE GE GE GE Philips Philips GE GE GE GE GE GE GE GE GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.84); 1.006 0.11 (-0.59, 0.83); 0.060 1.18 (-0.05, 2.49); 0.060 1.05 (-0.05, 2.49); 0.060 0.05 (-0.05, 2.49); 0.060 0.01 (-0.59, -0.05); 0.058 0.01 (-0.59, -0.058); 0.054 0.01 (-0.16, -0.58); 0.054 0.01 (-0.06, -0.58); 0.054 0.01 (-0.06, -0.58); 0.054 0.01 (-0.06, -0.58); 0.054	% Weight 5.66 4.32 5.69 6.33 2.25 7.29 7.23 7.23 7.23 7.23 5.81 6.97 6.22 6.23	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI rho Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Haughom et al. (2012) Su et al. (2015) Eadder al. (2015) Eadder al. (2015) Eadder al. (2015) Padoia et al. (2015) Padoia et al. (2015) Padoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2017) Preferrosimone et al. (2017) Preferrosimone et al. (2017) Teng et al. (2017) Random Effects Model (n=674): T1 Relaxation Time Bining et al. (2010) X Li et al. (2011)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 15 / 40 21 / 21 18 / 18 12 / 33 ; z=1.93; Test for Heter 58 / 19 10 / 12 30 / 42	Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Injury AC	I Scanner GE GE GE GE Philips GE GE GE GE GE GE GE GE GE GE GE GE GE	Strength 3.0T 3.	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.00 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.82); 0.725 0.28 (-0.40, 0.93); 0.408 1.18 (-0.05, 2.40); 0.064 0.88 (-1.15, -0.02); 0.044 0.87 (-0.08, 1.60); 0.034 0.01 (-0.59, 0.60); 0.938 0.01 (-0.59, 0.51) 0.01 (-0.69, 0.35); 0.519 0.008 (-0.76, 0.92); 0.346 0.277 (-0.12, 0.14); 0.316	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 5.81 6.97 6.22 6.23 4.82 3.84 4.82 3.84 4.42	-2 -1 0 1 2 3 4 SMD (95% C1)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-De Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Theologis et al. (2012) Su et al. (2012) Su et al. (2014) Okazaki et al. (2015) Cadie et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2017) Pedifier et al. (2017) Pietrosimone et al. (2017) Tag et al. (2016) X Li et al. (2010) X Li et al. (2011) Horis et al. (2011)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 16 / 40 15 / 40 16 / 54 10 / 20 19 / 22 14 / 49 15 / 40 16 / 40 17 / 23 17 / 54 18 / 18 18 / 18 19 / 22 14 / 49 15 / 40 12 / 23 13 / 12 16 / 12 16 / 12 17 / 12 17 / 12 18 / 18 18 / 18 18 / 18 10 / 20 19 / 22 14 / 49 15 / 40 10 / 40 17 / 12 18 / 18 18 / 18 18 / 18 18 / 18 18 / 18 19 / 22 10 / 20 19 / 22 14 / 49 17 / 21 18 / 18 18 / 18 18 / 18 18 / 18 18 / 18 18 / 18 18 / 18 10 / 40 10 / 12 10 / 42 10 /	Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Injury ACL Reconstruction ACL Injury ACL Reconstruction ACL Injury ACL INJU	I Scanner GE GE GE GE GE Philips GE GE GE GE Siemens GE GE GE GE GE GE GE GE GE GE GE GE	Strength 3.0T 3.	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.83); 0.752 0.28 (-0.40, 0.93); 0.406 1.18 (-0.05, 2.46); 0.066 1.058 (-1.15, -0.02); 0.044 0.937 (0.08, 1.66); 0.983 0.054 (-0.22, 1.23); 0.056 0.01 (-0.59, 0.66); 0.983 0.03 (-0.23, 0.96); 0.234 0.03 (-0.48, 0.23); 0.604 0.30 (-0.40, 0.93); 0.403 0.37 (-0.15, 1.03); 0.113 0.51 (-0.16, 1.17); 0.136 0.30 (-0.37, 0.96); 0.334 0.39 (-0.01, 0.38); 0.054 -0.17 (-0.69, 0.35); 0.519 0.006 (-0.72, 1.02, -0.01) 1.66 (1.23, 2.10, -0.001) 1.66 (1.23, 2.10, -0.001)	% Weight 5.66 4.32 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 7.23 7.23 7.23 7.23 7.23 7.23 7.23	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI rho Relaxation Time Bolbos et al. (2008) K Li et al. (2010) Haughom et al. (2012) Su et al. (2011) Su et al. (2015) Eadd et al. (2015) Cadd et al. (2015) Cadd et al. (2015) Pedioia et al. (2017) Perferbismence et al. (2017) Teng et al. (2017) Teng et al. (2017) Random Effects Model (n=674): T1 Relaxation Time Bining et al. (2008) X Li et al. (2011) Hovis et al. (2011) Hovis et al. (2011) Hovis et al. (2011)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 5 / 40 2 / 25 10 / 20 19 / 22 14 / 49 15 / 40 2 / 21 18 / 18 12 / 33 ; z=1.93; Test for Heter 58 / 19 10 / 12 33 / 128 36 / 42 33 / 128	Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Injury ACL Injury	L Scanner GE GE GE GE Philips GE GE GE GE GE GE GE GE GE GE GE GE GE	Strength 3.0T 3.	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.00 (-0.78, 0.96); 0.889 0.00 (-0.78, 0.96); 0.889 0.00 (-0.84, 0.48); 1.000 0.11 (-0.59, 0.88); 0.752 0.28 (-0.40, 0.93); 0.408 1.18 (-0.05, 2.40); 0.064 0.88 (-1.15, -0.02); 0.044 0.87 (0.08, 1.66); 0.031 0.61 (-0.02, 1.23); 0.054 0.01 (-0.59, 0.66); 0.938 0.01 (-0.59, 0.66); 0.938 0.01 (-0.35, 0.66); 0.938 0.01 (-0.35, 0.66); 0.938 0.01 (-0.35, 0.66); 0.938 0.01 (-0.35, 0.66); 0.938 0.01 (-0.37, 0.99); 0.331 0.19 (-0.01, 0.38); 0.054 0.17 (-0.69, 0.35); 0.519 0.08 (-0.76, 0.92); 0.846 2.77 (-212, 2.10); -0.011 0.68 (-1.76, 0.22); 0.846 2.77 (-212, 2.10); -0.011 0.68 (-1.76, 0.22); 0.846	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 7.23 5.81 6.97 6.22 6.23 4.82 3.84 4.82 3.84 4.42 5.09 5.09	-2 -1 0 1 2 3 4 SMD (95% C1)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-De Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Theologis et al. (2012) Sin et al. (2013) Theologis et al. (2014) Okazaki et al. (2015) Cadi et al. (2015) Eddia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2017) Pedioine et al. (2017) Pietrosimone et al. (2017) Pietrosimone et al. (2017) Tage t al. (2016) Sin et al. (2017) Random Effects Model (n=674): T2 Relaxation Time Bining et al. (2008) X Li et al. (2011) Kai et al. (2011) Hovis et al. (2011) Kai et al. (2011)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 15 / 40 24 / 54 10 / 40 21 / 21 18 / 18 12 / 3 23 / 123 65 / 57 40 / 42 24 / 42	Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Injury ACL Reconstruction ACL Re	L Scanner GE GE GE GE GE Philips GE GE GE GE GE GE GE GE GE GE GE GE GE	Strength 3.0T 3.	SMD (95% CI); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.82); 0.752 0.25 (-0.40, 0.93); 0.406 1.18 (-0.05, 2.40); 0.066 0.58 (-11, 5.002); 0.044 0.58 (-11, 5.002); 0.041 0.61 (-0.02, 1.23); 0.050 0.01 (-0.59, 0.66); 0.933 0.36 (-0.23, 0.99); 0.933 0.37 (-0.15, 0.93); 0.401 0.47 (-0.15, 1.03); 0.15 0.30 (-0.37, 0.99); 0.331 0.39 (-0.01, 0.58); 0.054 -0.17 (-0.69, 0.35); 0.519 0.08 (-0.70, 0.92); 0.846 0.09 (-0.17, 0.55); 0.300 1.29 (-0.17, 0.55); 0.300	 Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97 6.22 6.23 4.82 3.84 4.42 5.09 5.26 4.97 	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-ho Relaxation Time Bolbos et al. (2008) K L i et al. (2010) Haughom et al. (2012) Su et al. (2013) Su et al. (2015) Ead et al. (2015) Ead et al. (2015) Ead et al. (2015) Pedioia et al. (2017) Pedioia et al. (2017) Pedioia et al. (2017) Pedioia et al. (2017) TE Relaxation Time Bining et al. (2017) TI Relaxation Time Bining et al. (2018) X Li et al. (2011) Hovis et al. (2011) Hovis et al. (2011) Binam et al. (2012) Isocher al. (2013)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 21 / 21 18 / 18 12 / 33 ; z=1.93; Test for Heter 58 / 19 10 / 12 33 / 128 56 / 57 42 / 42 31 / 23	Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Injury	I Scanner GE GE GE GE Philips GE GE GE Siemens GE GE Siemens GE GE Siemens GE GE Siemens GE	Strength 3.0T 3.	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.82); 0.752 0.28 (-0.40, 0.93); 0.468 1.18 (-0.05, 2.40); 0.060 -0.58 (-1.15, -0.02); 0.044 0.87 (-0.08, 1.66); 0.031 0.61 (-0.02, 1.23); 0.054 0.01 (-0.59, 0.660); 0.938 0.01 (-0.59, 0.660); 0.938 0.01 (-0.59, 0.660); 0.938 0.01 (-0.59, 0.660); 0.938 0.01 (-0.15, 0.660); 0.938 0.01 (-0.16, 1.17); 0.136 0.03 (-0.37, 0.960); 0.381 0.19 (-0.01, 0.38); 0.054 0.015 (-0.16, 0.25); 0.300 0.19 (-0.17, 0.55); 0.0001 0.19 (-0.77, 0.55); 0.0001 0.11 (-0.75); 0.0001	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.07 6.22 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.26	-2 -1 0 1 2 3 4 SMD (95% C1)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-De Relaxation Time Bolbos et al. (2003) X Li et al. (2010) Theologis et al. (2012) Su et al. (2013) Theologis et al. (2014) Okazaki et al. (2015) Zaid et al. (2015) Cadistic et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2017) Pedioine et al. (2017) Pietrosimone et al. (2017) Tag et al. (2016) X Li et al. (2011) Kati et al. (2011) Kat et al. (2011) Hovis et al. (2011) Kat et al. (2012) Souph et al. (2012) Souph et al. (2013) Souph et al. (2013) Souph et al. (2013)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 22 14 / 49 15 / 40 16 / 40 17 / 22 14 / 49 15 / 40 21 / 21 18 / 18 12 / 33 z=1.93; Test for Heter 58 / 19 10 / 12 30 / 42 31 / 128 65 / 57 42 / 42 31 / 128 65 / 57 42 / 42 51 / 93 51 / 9	comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Injury ACL Reconstruction ACL Injury ACL IN	L Scanner GE GE GE GE GE Philips GE GE GE GE GE GE GE GE GE GE GE GE GE	Strength 3.0T 3.	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.82), 0.752 0.28 (-0.40, 0.93); 0.406 1.18 (-0.05, 2.46); 0.066 1.058 (-1.15, -0.02); 0.044 0.058 (-1.15, -0.02); 0.044 0.058 (-1.15, -0.02); 0.044 0.051 (-0.16, -0.23); 0.606 0.01 (-0.59, 0.66); 0.983 0.36 (-0.23, 0.994; 0.234 0.01 (-0.484, 0.23); 0.604 0.30 (-0.40, 0.993; 0.401 0.37 (-0.15, 1.093; 0.134 0.51 (-0.16, 1.17); 0.156 0.30 (-0.37, 0.994; 0.331 0.19 (-0.01, 0.35); 0.054 -0.17 (-0.69, 0.35); 0.519 0.006 (-0.76, 0.23); 0.846 0.19 (-0.17, 0.55; 0.300 1.29 (-0.71, 0.58); 0.301 0.19 (-0.17, 0.55); 0.300 1.20 (-0.75, 1.683); 0.019	 Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97 6.22 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 2.05 	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-ho Relaxation Time Bolbos et al. (2008) K L i et al. (2010) Haughom et al. (2012) Su et al. (2013) Su et al. (2015) Zaid et al. (2015) Zaid et al. (2015) Coakie et al. (2015) Dedoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2017) Preterosimone et al. (2017) Preterosimone et al. (2017) Pretorismone et al. (2017) TE Relaxation Time Bining et al. (2017) TE Relaxation Time Bining et al. (2010) X Li et al. (2011) Hovis et al. (2011) Hovis et al. (2011) Biam et al. (2012) Joseph et al. (2013) Sumerschuig et al. (2013) Sumerschuig et al. (2013)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 24 / 54 10 / 40 24 / 54 12 / 33 12 / 33 12 / 33 12 / 33 12 / 32 33 / 128 56 / 57 42 / 42 33 / 128 36 / 57 42 / 42 33 / 128 36 / 57 42 / 42 37 / 33 12 / 12 12 / 12 13 / 12 14 / 19 15 / 18 16 / 15 17 / 18 17	Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Inju	I Scanner GE GE GE CE Philips GE GE Philips GE GE Sieneens GE Sieneens GE CE Sieneens GE	Strength 3.0T 3.	SMD (95% CD; p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.82); 0.752 0.28 (-0.40, 0.93); 0.408 1.18 (-0.05, 2.49); 0.060 0.05, 2.49); 0.060 0.083 (-0.05, 2.49); 0.060 0.01 (-0.59, 0.660); 0.938 0.01 (-0.15, 0.660); 0.938 0.01 (-0.15, 0.68); 0.044 0.030 (-0.48, 0.23); 0.604 0.030 (-0.48, 0.23); 0.604 0.030 (-0.48, 0.23); 0.051 0.17 (-0.069, 0.35); 0.519 0.05 (-0.73, 1.49); 0.001 1.26 (0.75, 1.49); 0.361 1.26 (0.75, 1.58); 0.014 0.19 (-0.01, 0.55); 0.201 0.19 (-0.01, 0.55); 0.201 0.19 (-0.01, 0.55); 0.001 0.19 (-0.07, 0.55); 0.001 0.19 (-0.07, 0.55); 0.001 0.19 (-0.07, 0.55); 0.001 0.19 (-0.01, 0.55); 0.001	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 7.23 7.23 5.81 6.07 6.22 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.55	-2 -1 0 1 2 3 4 SMD (95% C1)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-De Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Theologis et al. (2012) Sin et al. (2013) Theologis et al. (2015) Cada et al. (2015) Cada et al. (2015) Redoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2017) Pedoia et al. (2017) Pedoia et al. (2017) Pedoia et al. (2017) Pedoia et al. (2017) Petrosinome et al. (2017) Petrosinome et al. (2017) Tag et al. (2016) Su et al. (2011) Kandom Effects Model (n=674): X Li et al. (2011) Kai et al. (2011) Kai et al. (2011) Kai et al. (2011) Simer et al. (2013) Simersching et al. (2013) Simersching et al. (2013) Simersching et al. (2013) Simersching et al. (2013)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 15 / 40 15 / 40 21 / 21 18 / 18 12 / 3 12 / 12 12 / 12 13 / 12 16 / 15 17 / 10 17 / 10 1	Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL INJURY	L Scanner GE GE GE GE Philips GE Philips GE GE Philips GE GE Siemens Siemens GE Siemens GE Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens	Strength 3.0T 3.	SMD (95% CI); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.82); 0.752 0.28 (-0.40, 0.93); 0.406 0.58 (-11, 5.002); 0.044 0.58 (-11, 5.002); 0.044 0.58 (-11, 5.002); 0.044 0.05 (-0.12, 0.99); 0.403 0.01 (-0.59, 0.66); 0.983 0.03 (-0.23, 0.99); 0.234 0.01 (-0.48, 0.22); 0.664 0.03 (-0.48, 0.22); 0.664 0.03 (-0.48, 0.22); 0.664 0.03 (-0.43, 0.99); 0.401 0.47 (-0.15, 1.09); 0.135 0.30 (-0.37, 0.99); 0.351 0.19 (-0.01, 0.35); 0.519 0.08 (-0.76, 0.92); 0.846 0.77 (-1.23, 3.41); 0.001 1.68 (-1.25, 1.001; 0.16 (-0.17, 0.55); 0.300 1.22 (-0.78, 0.951) 0.531 (-0.514) 0.551 (-0.	% Weight 5.66 4.32 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97 6.22 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.25	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-ho Relaxation Time Bolbos et al. (2008) K L i et al. (2010) Haughom et al. (2012) Su et al. (2013) Su et al. (2015) Zaid et al. (2015) Zaid et al. (2015) Coski et al. (2015) Dedoia et al. (2015) Pedoia et al. (2017) Pedoia et al. (2017) Petorsimone et al. (2017) Pietrosimone et al. (2017) Pietrosimone et al. (2017) Pietrosimone et al. (2017) Pietrosimone et al. (2017) TI Relaxation Time Bining et al. (2017) Xu et al. (2011) Howis et al. (2011) Howis et al. (2011) Baum et al. (2012) Joseph et al. (2013) Suenerching et al. (2013)	7); z=5.19; Test for Het Healthy / Ar Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 24 / 44 10 / 40 12 / 11 18 / 18 12 / 33 23 / 128 58 / 19 10 / 12 13 / 12 58 / 19 10 / 12 33 / 128 58 / 19 10 / 12 13 / 12 13 / 12 13 / 128 13 / 128 13 / 128 14 / 49 15 / 15 15 / 15 15 / 15 15 / 15 15 / 15 15 / 15	Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Injury	I Scanner GE GE GE GE Philips GE GE Philips CE GE GE Siemens GE GE Siemens GE Siemens Siemens Siemens Siemens Siemens Siemens	Strength 3.0T 3.	SMD (95% C1); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.88, 0.884; 1.000 0.11 (-0.59, 0.83); 0.752 0.28 (-0.40, 0.93); 0.408 1.18 (-0.05, 2.49); 0.060 0.05 (-0.05, 2.49); 0.060 0.05 (-0.05, 2.49); 0.060 0.01 (-0.59, 0.660); 0.938 0.01 (-0.15, 0.660); 0.938 0.01 (-0.15, 0.68); 0.038 0.01 (-0.15, 0.68); 0.038 0.01 (-0.15, 0.68); 0.038 0.01 (-0.15, 0.05); 0.038 0.01 (-0.15, 0.05); 0.038 0.01 (-0.16, 1.17); 0.136 0.03 (-0.37, 0.96); 0.381 0.19 (-0.01, 0.33); 0.054 -0.17 (-0.69, 0.35); 0.519 0.08 (-0.76, 0.92); 0.846 2.77 (-12, 2.10); -0.001 0.19 (-0.17, 0.55); 0.3001 1.28 (0.75, 1.58); -0.011 0.59 (-0.23, 1.46); -0.011 0.59 (-0.23, 1.46); -0.010 0.21 (-0.48, 0.93); 0.510	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 7.23 7.23 5.81 6.07 6.22 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.25 5.42 4.25	-2 -1 0 1 2 3 4 SMD (95% C1)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-De Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Theologis et al. (2012) Sis et al. (2013) Theologis et al. (2015) Catad et al. (2015) Catad et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2017) Pediffer et al. (2017) Pietrosimone et al. (2017) Pietrosimone et al. (2017) Pietrosimone et al. (2017) Pietrosimone et al. (2017) Tag et al. (2016) Sis et al. (2011) Kandom Effects Model (n=674): T2 Relaxation Time Bining et al. (2010) Xu et al. (2011) Howis et al. (2011) Mai et al. (2012) Sismersching et al. (2013) Sismersching et al. (2013) Sismersching et al. (2013) Sismersching et al. (2015) Li et al. (2015)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 15 / 40 15 / 40 16 / 15 18 / 18 18 / 18 10 / 20 21 / 21 18 / 18 18 / 18 10 / 20 21 / 21 18 / 18 10 / 20 21 / 21 18 / 18 23 / 21 23 / 21 23 / 21 23 / 23 25 / 25 27 /	Comparison ACL Injury ACL Injury ACL Injury ACL Digity ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Reconstruction ACL Reconstruction ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Injury Condral Damage ACL Injury Cond Incidence Mid Varis ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction	L Scanner GE GE GE GE Philips GE Philips GE GE Philips GE GE Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens	Strength 3.0T 3.	SMD (95% C1); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.38, 0.484); 1.000 0.11 (-0.59, 0.82); 0.752 0.28 (-0.40, 0.93); 0.406 1.18 (-0.05, 2.40); 0.066 1.18 (-0.05, 2.40); 0.066 1.18 (-0.05, 2.40); 0.066 1.18 (-0.15, -0.02); 0.044 0.58 (-1.15, -0.02); 0.044 0.58 (-1.15, -0.02); 0.044 0.03 (-0.48, 0.28); 0.664 0.30 (-0.48, 0.28); 0.654 0.17 (-0.69, 0.35); 0.054 0.17 (-0.69, 0.35); 0.054 0.17 (-0.69, 0.35); 0.054 0.19 (-0.17, 0.55); 0.300 1.26 (0.75, 0.551 0.19 (-0.17, 0.55); 0.301 1.26 (0.75, 0.551 0.19 (-0.17, 0.551) 0.19 (-0.17, 0.551; 0.019) 0.52 (-0.35, 1.48); 0.001 1.68 (1.25, 2.148); 0.019 0.52 (-0.35, 1.48); 0.019 0.52 (-0.35, 1.48); 0.531 0.13 (-0.84, 0.59); 0.534 0.13 (-0.84, 0.59);	 Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97 6.23 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.25 4.25 4.25 4.25 5.26 5.26 	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-ho Relaxation Time Bolbos et al. (2008) K L i et al. (2010) Haughom et al. (2012) Su et al. (2013) Edit (2015) Zaid et al. (2015) Zaid et al. (2015) Coaki et al. (2015) Dedoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2017) Petrosimone et al. (2017) Pietrosimone et al. (2017) Random Effects Model (n=674): T2 Relaxation Time Bining et al. (2017) Ku et al. (2011) Baum et al. (2012) Joseph et al. (2013) Suere-Rohnje et al. (2013) Suere-Rohnje et al. (2013) Liebi et al. (2015)	7); z=5.19; Test for Het Healthy / Ar Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 24 / 44 10 / 40 24 / 42 18 / 18 12 / 33 12 / 25 58 / 19 10 / 12 33 / 128 58 / 19 10 / 12 10 / 12 13 / 12 15 / 15 15 / 15 15 / 15 15 / 15 15 / 15 15 / 15 16 / 15 16 / 15 17 / 15 18 / 18 18 / 18 18 / 18 19 / 10 10 / 12 10 / 13 10 / 13 10 / 12 10 / 12	Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Injury	I Scanner GE GE GE GE Philips GE GE GE Siemens Siemens GE GE Siemens GE Siemens GE Siemens Siemens GE	Strength 3.0T 3.	SMD (95% C1); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.88, 0.384; 1.000 0.11 (-0.59, 0.83); 0.51 0.11 (-0.59, 0.83); 0.51 0.13 (-0.05, 2.49); 0.066 1.18 (-0.05, 2.49); 0.066 1.18 (-0.05, 2.49); 0.066 1.085 (-0.12, 1.23); 0.044 0.87 (0.081, 1.66); 0.031 0.61 (-0.02, 1.23); 0.058 0.01 (-0.55, 0.660); 0.981 0.36 (-0.23, 0.96); 0.238 0.36 (-0.23, 0.96); 0.238 0.36 (-0.23, 0.96); 0.238 0.36 (-0.23, 0.96); 0.381 0.51 (-0.16, 1.17); 0.136 0.30 (-0.37, 0.96); 0.381 0.19 (-0.01, 0.38); 0.054 -0.17 (-0.69, 0.35); 0.519 0.08 (-0.76, 0.92); 0.846 2.77 (-121, 2.34); -0.001 1.68 (1.25, 2.10); -0.031 1.26 (0.23, 1.46); 1.060 0.29 (-0.48, 0.93); 0.514 0.31 (-0.84, 0.93); 0.514 0.31 (-0.34, 0.93); 0.514 0.51 (-0.11, 0.51); 0.3001 0.51 (-0.11, 0.51); 0.3001	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 7.23 7.23 5.81 6.97 6.22 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.25 5.42 5.26 4.11	-2 -1 0 1 2 3 4 SMD (95% C1)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-De Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Thoologis et al. (2012) Si et al. (2013) Thoologis et al. (2015) Cad et al. (2015) Cadi et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2017) Pedifier et al. (2017) Pedifier et al. (2017) Pietrosimone et al. (2017) Pietrosimone et al. (2017) Teng et al. (2016) Si et al. (2011) Random Effects Model (n=674): X Li et al. (2011) Kai et al. (2011) Kai et al. (2011) Kai et al. (2011) Si et al. (2011) Si et al. (2012) Si et al. (2013) Si et al. (2013) Si et al. (2013) Si et al. (2013) Si et al. (2015) This et al. (2015) T	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 15 / 40 15 / 40 24 / 54 10 / 40 12 / 21 18 / 18 12 / 3 35 / 19 30 / 42 33 / 128 65 / 57 30 / 42 33 / 128 65 / 57 30 / 42 35 / 19 10 / 12 30 / 42 37 / 13 10 / 12 30 / 42 37 / 13 10 / 12 30 / 42 37 / 13 10 / 15 15 / 15 30 / 50 10 / 10 10 / 10 / 10 10 / 10	Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Reconstruction ACL Injury Carindge Injury OAI Incidence Mid Varis ACL Reconstruction ACL Reconstruction ACL Reconstruction	L Scanner GE GE GE GE Philips DE BE Philips GE GE Philips GE GE Siemens	Strength 3.0T 3.	SMD (95% CI); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.38, 0.484); 1.000 0.11 (-0.59, 0.83); 0.060 1.18 (-0.05, 2.40); 0.060 1.05 (-11, 5.00); 0.044 0.58 (-11, 5.00); 0.044 0.58 (-11, 5.00); 0.044 0.59 (-0.61, 0.03); 0.401 0.01 (-0.59, 0.66); 0.983 0.36 (-0.21, 23); 0.056 0.11 (-0.48, 0.28); 0.664 0.30 (-0.48, 0.28); 0.654 0.11 (-0.16, 0.35); 0.054 0.11 (-0.06, 0.35); 0.054 0.117 (-0.69, 0.35); 0.054 0.12 (-0.76, 0.92); 0.346 0.16 (-0.17, 0.55); 0.300 1.26 (-0.75, 0.53); 0.015 0.41 (-0.07, 0.75; 0.019) 0.59 (-0.21, 1.48); 0.2001 0.12 (-0.78, 0.53); 0.519 0.03 (-0.03, 0.48, 0.59); 0.534 0.13 (-0.48, 0.59); 0.534	 Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97 6.22 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.25 4.22 5.26 4.11 3.71 	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA Tirbo Relaxation Time Bolbos et al. (2008) I to Li et al. (2010) Haughon et al. (2012) Su et al. (2013) Su et al. (2015) Ead et al. (2015) Ead et al. (2015) Ead et al. (2015) Eadier al. (2015) Pedioia et al. (2015) Pedioia et al. (2017) Pediffer et al. (2017) Performent et al. (2017) T2 Relaxation Time Bining et al. (2017) Xu et al. (2011) Ku et al. (2011) Hovis et al. (2011) Baum et al. (2013) Suere-chenig et al. (2015) H Li et al. (2015) Edde	7); z=5.19; Test for Het Healthy / Ar Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 24 / 44 10 / 40 15 / 40 27 / 23 12 / 33 12 / 33 12 / 33 12 / 33 12 / 33 12 / 12 13 / 12 15 / 15 15 / 10 15 / 10 15 / 10 15 / 10 15 / 10 15 / 10 15 / 10 16 / 10 17 /	comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction	I Scanner GE GE GE GE GE Philips GE GE GE Siemens Siemens GE Siemens GE Siemens GE Siemens GE Siemens GE Siemens Sieme	Strength 3.0T 3.	SMD (95% C1); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.98); 0.889 0.06 (-0.88, 0.834; 1.000 0.11 (-0.59, 0.83); 0.752 0.28 (-0.40, 0.93); 0.404 0.87 (0.08, 1.66); 0.031 0.61 (-0.02, 1.23); 0.058 0.01 (-0.59, 0.66); 0.981 0.01 (-0.16, 0.23); 0.51 0.01 (-0.17, 0.55); 0.300 1.22 (0.75, 1.48); c.0001 0.41 (-0.07, 0.75); 0.01 0.41 (-0.07, 0.75); 0.01 0.23 (-0.48, 0.93); 0.51 0.13 (-0.84, 0.93); 0.51 0.03 (-0.33, 0.56); 0.73 0.33 (-0.43, 0.56); 0.73 0.33 (-0.43, 0.56); 0.73 0.51 (-0.44, 0.65); 0.73 0.51 (-0.44, 0.65); 0.73 0.51 (-0.44, 0.65); 0.73 0.51 (-0.44, 0.65); 0.73	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 7.23 7.23 5.81 6.97 6.22 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.25 4.25 5.26 4.71 3.91 4.25 5.26 4.71 5.30 3.91 4.25 5.26 5.30 3.91 4.25 5.26 5.30 3.91 4.25 5.26 5.30 5.97 5.26 5.26 5.26 5.30 5.97 5.30 5.97 5.30 5.97 5.30 5.97 5.30 5.97 5.26 5.97 5.30 5.97 5.30 5.97 5.26 5.97 5.26 5.97 5.30 5.97 5.26 5.26 5.26 5.30 5.97 5.26 5.26 5.26 5.26 5.30 5.30 5.31 5.30 5.31 5.	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-De Relaxation Time Bollos et al. (2008) X Li et al. (2013) Theologis et al. (2013) Theologis et al. (2015) Zaid et al. (2015) Zaid et al. (2015) Casido et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2017) Pedifer et al. (2017) Pedifer et al. (2017) Petersonome et al. (2017) Pietrosimone et al. (2017) Tag et al. (2010) Na et al. (2011) Random Effects Model (n=674): T2 Relaxation Time Bining et al. (2011) Kai et al. (2011) Kai et al. (2011) Kai et al. (2011) Kai et al. (2011) Sueresching et al. (2013) Sueresching et al. (2013) Sueresching et al. (2013) Sueresching et al. (2013) Liebi et al. (2015) H Li et al. (2015) H Li et al. (2015) H Li et al. (2015) H Li et al. (2015) Chemo et al. (2016) Paimieri-Smith et al. (2016)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 15 / 40 15 / 40 12 / 21 18 / 18 12 / 3 12 / 23 12 / 23 12 / 23 12 / 23 12 / 23 12 / 23 12 / 24 13 / 12 30 / 42 33 / 128 65 / 57 10 / 12 30 / 42 33 / 128 65 / 57 15 / 15 15 / 15 15 / 15 16 / 15 16 / 15 16 / 15 15 / 15 15 / 15 15 / 15 16 / 15 17 / 10 17 / 17 17 / 17 / 17 17 / 17	comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction PCL Deficient ACL Reconstruction PCL Deficient ACL Reconstruction PCL Deficient ACL Reconstruction ACL Reconstruction ACL Injury ACL I	L Scanner GE GE GE GE GE Philips Philips Philips GE GE Siemens GE Siemens GE Siemens GE Siemens Siemen	Strength 3.0T 3.	SMD (95% CI); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.38, 0.89); 0.060 0.11 (-0.59, 0.83); 0.060 -0.38 (-1.15, 0.02); 0.044 0.38 (-0.93); 0.404 0.38 (-0.93); 0.404 0.38 (-0.93); 0.404 0.45 (-0.15, 0.03); 0.041 0.53 (-0.15, 0.03); 0.054 -0.17 (-0.69, 0.35); 0.054 -0.17 (-0.69, 0.35); 0.054 -0.17 (-0.69, 0.35); 0.054 -0.17 (-0.7, 0.52); 0.346 -0.17 (-0.48, 0.92); 0.344 -0.13 (-0.48, 0.95); 0.731 0.04 (-0.448, 0.52); 0.737 0.06 (-1.31, 2.28); -2001 1.29 (-0.7, 2.51); -2001 0.46 (-0.448, 0.52); 0.737 0.06 (-1.31, 2.28); -2017 0.06 (-1.31, 2.28); -2017 0.06 (-1.31, 2.28); -2017 0.06 (-1.31, 2.28); -2017 0.06 (-1.34, 0.28); 0.715 0.05 (-1.12, 2.28); -2017 0.06 (-1.12, 2.28); -2017 0.07 (-1.28); -2017 0.06 (-1.12, 2.28); -2017 0.07 (-1.28); -20	 Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97 6.22 6.23 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.25 4.22 4.26 5.26 4.11 3.71 4.78 3.82 	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA Ti-ho Relaxation Time Bolhos et al. (2008) X Li et al. (2010) Haughon et al. (2012) Su et al. (2013) Theologis et al. (2014) Okazaki et al. (2015) Zaid et al. (2015) Zaid et al. (2015) Matsubar et al. (2015) Pedoin et al. (2015) Pedoin et al. (2015) Pedoin et al. (2017) Pedoin et al. (2017) T2 Relaxation Time Bining et al. (2017) X Li et al. (2011) Howis et al. (2011) Howis et al. (2011) Baum et al. (2012) Joseph et al. (2013) Sueraching et al. (2015) H Li et al. (2015) Cheno et al. (2016)	7); z=5.19; Test for Het Healthy / Ar Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 24 / 42 10 / 40 24 / 42 33 / 128 58 / 19 10 / 12 33 / 128 58 / 19 10 / 12 13 / 12 15 / 15 15 / 15 15 / 15 15 / 15 15 / 10 16 / 10 17 / 12 17 / 12	comparison Comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction	I Scanner GE GE GE GE GE Philips GE GE GE Siemens Siemens GE Siemens GE Siemens GE Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens	Strength 3.0T 3.	SMD (95% C1); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.88, 0.834; 1.000 0.11 (-0.59, 0.83); 0.752 0.28 (-0.40, 0.93); 0.404 0.87 (0.08, 1.66); 0.031 0.61 (-0.02, 1.23); 0.058 0.01 (-0.59, 0.66); 0.981 0.01 (-0.16, 0.23); 0.514 0.03 (-0.47, 0.96); 0.381 0.51 (-0.16, 1.17); 0.136 0.30 (-0.37, 0.96); 0.381 0.51 (-0.16, 1.17); 0.136 0.30 (-0.37, 0.96); 0.381 0.19 (-0.01, 0.38); 0.554 -0.17 (-0.69, 0.35); 0.519 0.08 (-0.76, 0.92); 0.346 2.77 (-12, 3.41); 0.0001 1.68 (1.25, 2.10); 0.001 1.68 (1.25, 2.10); 0.001 0.19 (-0.17, 0.55); 0.3001 1.23 (-0.34, 0.93); 0.514 0.13 (-0.34, 0.93); 0.531 0.33 (-0.33, 0.58); 0.730 0.33 (-0.33, 0.58); 0.731 0.33 (-0.34, 0.53); 0.731 0.41 (-0.43, 0.63); 0.737 0.16 (-0.43, 0.63); 0.737 0.16 (-0.43, 0.63); 0.737 0.16 (-0.43, 0.63); 0.731 0.51 (-0.33, 1.36); 0.241 0.07 (-0.46, 0.61); 0.737	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 7.23 7.23 5.81 6.97 6.22 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.25 4.22 5.26 4.11 3.71 4.25 5.26	-2 -1 0 1 2 3 4 SMD (65% C1)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-De Relaxation Time Bolbos et al. (2008) X Li et al. (2010) Theologis et al. (2012) Si et al. (2013) Theologis et al. (2015) Zaid et al. (2015) Catadown et al. (2015) Catadown et al. (2015) Dedaid et al. (2015) Pedoia et al. (2015) Pedoia et al. (2017) Pedoia et al. (2017) Petorsimone et al. (2017) Tag et al. (2018) Xu et al. (2011) Kai et al. (2011) Kai et al. (2011) Sumershing et al. (2013) Sumershing et al. (2013) Sumershing et al. (2013) Sumershing et al. (2013) Sumershing et al. (2015) H Li et al. (2015) H Li et al. (2015) H Li et al. (2016) Sei et al. (2016)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 10 / 12 11 / 11 16 / 15 8 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 15 / 40 16 / 15 17 / 40 17 / 42 18 / 18 18 / 18 10 / 20 21 / 21 18 / 18 10 / 20 21 / 21 10 / 12 30 / 42 33 / 128 65 / 57 35 / 13 10 / 12 30 / 42 35 / 15 15 / 15 30 / 50 16 / 15 30 / 50 16 / 15 17 / 10 21 / 27 17 / 11 20 / 40 54 / 54	comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Reconstruction ACL Reconstruction ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reco	I Scanner GE GE GE GE GE Philips Philips GE GE Siemens GE Siemens GE Siemens S	Strength 3.0T 3.	SMD (95% C1); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.408 1.18 (-0.05, 2.40); 0.060 -0.58 (-1.15, -0.02); 0.044 0.58 (-1.15, -0.02); 0.044 0.58 (-1.15, -0.02); 0.044 0.59 (-0.61, -0.02); 0.040 0.01 (-0.59, 0.66); 0.983 0.03 (-0.40, 0.99); 0.404 0.03 (-0.40, 0.99); 0.519 0.03 (-0.47, 0.99); 0.354 -0.17 (-0.69, 0.35); 0.519 0.08 (-0.76, 0.92); 0.354 -0.17 (-0.48, 0.92); 0.354 -0.19 (-0.01, 0.35); 0.519 0.08 (-0.76, 0.92); 0.346 -0.19 (-0.17, 0.55); 0.300 1.22 (-0.74, 0.93); 0.354 -0.31 (-0.04, 0.59); 0.733 0.04 (-0.448, 1.99); 0.737 0.04 (-0.448, 1.29); 0.373 0.04 (-0.448, 1.29); 0.377 0.04 (-0.44, 1.13); 0.141 0.577 0.04 (-0.34, 1.358); 0.777 0.04 (-0.34, 1.358); 0.777 0.04 (-0.34, 1.358); 0.777 0.04 (-0.34, 0.441); 0.348	 Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97 6.22 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.20 4.97 5.20 4.78 3.82 4.77 5.21 	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA Tirbo Relaxation Time Bolbos et al. (2008) I to L et al. (2010) Haughon et al. (2012) Su et al. (2013) Su et al. (2015) Ead et al. (2015) Pedioia et al. (2015) Pedioia et al. (2017) Pediffer et al. (2017) Performance et al. (2017) T2 Relaxation Time Bining et al. (2016) X Li et al. (2011) Hovis et al. (2011) Hovis et al. (2011) Baum et al. (2013) Suere-choirg et al. (2013) Suere-choirg et al. (2013) Suere-choirg et al. (2013) Suere-choirg et al. (2015) H Li et al. (2016) Bau et al. (2016) Suer et al. (2016) Suer et al. (2016) Su et al. (2016) Su et al. (2016)	7); z=5.19; Test for Het Healthy / Ar Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 24 / 42 10 / 40 12 / 33 22 J.33; Test for Heter 58 / 19 10 / 12 33 / 128 58 / 19 10 / 12 10 / 10 10 / 12 12 / 12 11 / 11 11 / 11 12 / 40 54 / 54 57 12 / 22 10 / 12 10 / 10 10 / 12 10 / 1	comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Reconstruction ACL Reconstruction ACL Construction ACL Injury ACL Injury	I Scanner GE GE GE GE GE Philips GE GE GE Siemens GE Siemens GE Siemens GE Siemens GE Siemens	Strength 3.0T 3.	SMD (95% C1); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.98); 0.889 0.06 (-0.38, 0.484; 1.000 0.11 (-0.59, 0.482; 1.006) -0.58 (-1.15, -0.04) 0.57 (-0.08, 0.25); 0.044 0.57 (-0.08, 0.25); 0.044 0.57 (-0.08, 0.25); 0.044 0.57 (-0.08, 0.25); 0.044 0.57 (-0.08, 0.25); 0.058 0.01 (-0.59, 0.66); 0.931 0.36 (-0.22, 1.95); 0.234 0.16 (-0.48, 0.25); 0.640 0.39 (-0.37, 0.96); 0.381 0.51 (-0.16, 1.17); 0.136 0.30 (-0.37, 0.96); 0.381 0.51 (-0.16, 1.17); 0.136 0.30 (-0.37, 0.96); 0.381 0.19 (-0.01, 0.38); 0.054 -0.17 (-0.68, 0.35); 0.519 0.08 (-0.76, 0.92); 0.346 2.77 (-12, 3.41); -0.001 1.68 (1.25, 2.10); -0.011 0.9 (-0.17, 0.55); 0.300 1.22 (0.75, 1.48); -0.001 0.41 (-0.07, 0.75); 0.012 0.41 (-0.34, 0.93); 0.514 0.13 (-0.84, 0.93); 0.514 0.13 (-0.84, 0.93); 0.515 0.51 (-0.34, 1.26); 0.2715 0.51 (-0.34, 1.36);	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 7.23 7.23 5.81 6.97 6.22 6.23 4.82 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.25 4.22 5.26 4.97 5.30 3.91 4.25 5.26 4.97 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.26 4.77 5.30 3.91 4.25 5.30 5.30 3.91 4.25 5.30 5.30 5.30 5.30 5.31 4.25 5.30 5.31 5.31 5.31 5.31 5.30 5.30 5.31 5.31 5.31 5.30 5.30 5.31 5.31 5.31 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30	-2 -1 0 1 2 3 4 SMD (65% C1)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-De Relaxation Time Bollos et al. (2008) X Li et al. (2013) Theologie et al. (2013) Theologie et al. (2015) Zaid et al. (2015) Zaid et al. (2015) Casidiant et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2017) Pedifier et al. (2017) Pedifier et al. (2017) Pietrosimone et al. (2017) T2 Relaxation Time Bining et al. (2010) Xu et al. (2011) Kai et al. (2011) Kai et al. (2011) Suereschiq et al. (2013) Suereschiq et al. (2013) Suereschiq et al. (2013) Suereschiq et al. (2013) Suereschiq et al. (2013) Liebi et al. (2015) H Li et al. (2015) H Li et al. (2015) H Li et al. (2016) Chemo et al. (2016) Suet al. (2016) Suet al. (2016) Suet al. (2016) Suet al. (2017)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 11 / 11 16 / 15 16 / 16 10 / 20 19 / 22 14 / 49 15 / 40 15 / 40 15 / 40 15 / 40 16 / 15 10 / 20 19 / 22 14 / 49 15 / 40 15 / 40 12 / 21 18 / 18 12 / 3 12 / 3 12 / 12 33 / 128 65 / 57 13 / 42 33 / 128 65 / 57 15 / 15 15 / 10 27 / 27 11 / 11 20 / 40 15 / 30 10 / 12 10	comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction PCL Deficient ACL Reconstruction PCL Deficient ACL Reconstruction PCL Deficient ACL Reconstruction PCL Deficient ACL Reconstruction ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Injury Condral Damage ACL Injury Carilage Injury OAI Incidence Mediacus Grade 1-2 Unilateral Synotoms OAI Incidence Mediacus Grade 1-2 Charlence ACL Reconstruction ACL Rec	I Scanner GE GE GE GE GE Philips Philips GE GE Philips GE GE Siemens Siemens GE Siemens Siemen	Strength 3.0T 3.	SMD (95% C1); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.38, 0.88); 0.060 0.11 (-0.59, 0.83); 0.060 -0.38 (-1.15, -0.02); 0.044 0.58 (-1.15, -0.02); 0.044 0.58 (-1.15, -0.02); 0.044 0.58 (-1.15, -0.02); 0.044 0.59 (-0.15, -0.02); 0.044 0.59 (-0.15, -0.02); 0.044 0.50 (-0.48, 0.28); 0.054 0.10 (-0.48, 0.28); 0.054 0.30 (-0.40, 0.99); 0.401 0.30 (-0.40, 0.99); 0.401 0.51 (-0.15, 1.01); 0.134 0.51 (-0.16, 1.17); 0.136 0.30 (-0.40, 0.99); 0.519 0.08 (-0.76, 0.92); 0.846 2.77 (2.12, 3.41); 2.001 1.68 (125, 2.10); 2.0011 1.68 (125, 2.10); 2.0011 0.16 (-0.43, 0.45); 0.534 0.31 (-0.33, 0.68); 0.373 2.06 (-1.34, 1.28); 0.2017 2.06 (-1.34, 1.28); 0.2017 0.40 (-0.48, 1.29); 0.373 0.40 (-0.44, 0.45); 1.787 0.51 (-0.34, 0.43); 0.544 0.31 (-0.34, 0.43); 0.544 0.51 (-0.54, 0.54); 0.575 0.51 (-0.34, 0.43); 0.544 0.51 (-0.34, 0.54); 0.544 0.51 (-0.54, 0.54); 0.575 0.51 (-0.34, 0.43); 0.544 0.51 (-0.54, 0.54); 0.575 0.51 (-0.54, 0.575; 0.575 0.51 (-0.54, 0.575; 0.575 0.51 (-0.54, 0.575; 0.575 0.51 (-0.54, 0.575; 0.57	 Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97 6.22 6.23 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.25 4.26 5.20 4.11 3.71 4.78 3.82 4.77 5.21 5.08 4.38 	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-ho Relaxation Time Bolbos et al. (2008) N Li et al. (2010) Haughon et al. (2012) Se et al. (2013) Se et al. (2013) Se et al. (2015) Ead et al. (2015) Coaki et al. (2015) Coaki et al. (2015) Pedoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2017) Pedoia et al. (2017) T2 Relaxation Time Bining et al. (2018) X Li et al. (2011) Rowsh et al. (2013) Suser-Schnig et al. (2013) Suser-Schnig et al. (2013) Suser-Schnig et al. (2013) Suser et al. (2015) H Li et al. (2015) H Li et al. (2016) Su et al. (2017) Su et al. (2016) Su et al. (2016) Su et al. (2016) Su et al. (2016) Su et al. (2017) Su et al. (2016) Su et al. (2017) Su et al. (2017) Su et al. (2016) Su et al. (2016) Su et al. (2016) Su et al. (2017) Su et al.	7); z=5.19; Test for Het Healthy / Ar Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 24 / 44 10 / 40 24 / 42 18 / 18 18 / 18 18 / 18 18 / 18 12 / 33 33 / 128 58 / 19 10 / 12 30 / 42 33 / 128 58 / 19 10 / 12 30 / 42 33 / 128 58 / 19 10 / 12 30 / 42 33 / 128 58 / 57 42 / 42 33 / 128 58 / 19 10 / 12 30 / 42 33 / 128 58 / 19 10 / 12 30 / 42 43 / 33 12 / 15 15 / 15 17 / 15	comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Inju	I Scanner GE GE GE GE GE GE Philips GE GE Siemens GE Siemens GE Siemens GE Siemens GE Siemens GE Siemens GE Siemens Siemens Siemens GE Siemens	Strength 3.0T 3.	SMD (95% C1); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.38, 0.484); 1.000 0.11 (-0.59, 0.83); 0.050 1.18 (-0.05, 2.46); 0.051 0.65 (-0.02); 0.044 0.97 (-0.08, 1.66); 0.031 0.61 (-0.02, 1.23); 0.056 0.01 (-0.59, 0.66); 0.931 0.36 (-0.23, 0.96); 0.234 0.016 (-0.48, 0.23); 0.640 0.39 (-0.48, 0.23); 0.640 0.39 (-0.48, 0.23); 0.640 0.39 (-0.48, 0.23); 0.640 0.39 (-0.48, 0.23); 0.54 0.30 (-0.47, 0.96); 0.381 0.51 (-0.16, 1.17); 0.136 0.30 (-0.37, 0.96); 0.381 0.19 (-0.01, 0.38); 0.054 -0.17 (-0.69, 0.35); 0.519 0.08 (-0.76, 0.92); 0.546 0.27 (-0.21, 2.341); -0.001 0.19 (-0.17, 0.55); 0.300 1.22 (0.75, 1.88); -0.051 0.23 (-0.48, 0.59); 0.730 0.33 (-0.38, 0.59); 0.731 0.33 (-0.38, 0.59); 0.731 0.33 (-0.34, 0.59); 0.731 0.33 (-0.34, 0.59); 0.731 0.33 (-0.34, 0.59); 0.731 0.33 (-0.34, 0.51); 0.751 0.13 (-0.44, 0.61); 0.787 0.04 (-0.34, 0.41); 0.5484 0.23 (-0.43, 0.53); 0.571 0.53 (-0.34, 0.51); 0.37 0.80 (0.06, 1.54); 0.37	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.23 7.23 7.23 7.23 7.23 7.23 7.23 6.22 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.25 4.25 4.25 5.26 4.11 3.71 4.78 4.78 5.21 5.21 5.21 5.28 4.38 4.14	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-De Relaxation Time Bolbos et al. (2008) X Li et al. (2013) Theologis et al. (2013) Theologis et al. (2015) Sai et al. (2015) Zaid et al. (2015) Cadadi et al. (2015) Cadadi et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2017) Pedifier et al. (2017) Pedifier et al. (2017) Pietrosimone et al. (2017) Tag et al. (2016) Su et al. (2011) Kai et al. (2011) Kai et al. (2011) Maisubar et al. (2013) Sumershing et al. (2015) H Li et al. (2015) H Li et al. (2016) Sing et al. (2016) Sing et al. (2017) Kagan et al. (2018) Su et al. (2017) Kagan et al. (2018)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 15 / 40 12 / 21 18 / 18 12 / 3 35 / 19 12 / 21 18 / 18 12 / 3 35 / 19 30 / 42 33 / 128 65 / 57 31 / 12 30 / 42 33 / 128 65 / 57 31 / 12 30 / 42 33 / 128 65 / 57 31 / 12 30 / 42 33 / 128 56 / 57 15 / 15 15 / 15 15 / 15 15 / 15 16 / 15 17 / 10 20 / 40 21 / 27 11 / 11 20 / 40 54 / 54 89 / 50 10 / 10 21 / 27 21	comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Reconstruction ACL Reconstruction ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstr	I Scanner GE GE GE GE GE Philips Philips Philips GE GE Siemens GE Siemens GE Siemens S	Strength 3.0T 3.	SMD (95% C1); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.408 1.18 (-0.05, 2.40); 0.060 -0.58 (-1.15, -0.02); 0.044 0.58 (-1.15, -0.02); 0.044 0.58 (-1.15, -0.02); 0.044 0.59 (-0.15, -0.02); 0.044 0.59 (-0.15, -0.02); 0.044 0.51 (-0.16, 1.17); 0.156 0.31 (-0.16, 1.17); 0.156 0.31 (-0.16, 1.17); 0.156 0.31 (-0.16, 1.17); 0.156 0.31 (-0.17, 0.59); 0.354 -0.17 (-0.69, 0.35); 0.054 -0.17 (-0.69, 0.35); 0.054 -0.17 (-0.69, 0.35); 0.054 -0.17 (-0.69, 0.35); 0.054 -0.17 (-0.7, 0.59); 0.346 -0.17 (-0.7, 0.59); 0.346 -0.17 (-0.7, 0.59); 0.346 -0.17 (-0.48, 0.99); 0.519 0.08 (-0.7, 0.92); 0.346 -0.17 (-0.48, 0.99); 0.519 0.09 (-0.17, 0.55); 0.001 1.26 (-0.7, 1.58); 0.001 1.68 (-1.25, -1.08); 0.019 0.59 (-0.21, 1.48); 0.019 0.59 (-0.21, 1.48); 0.017 0.26 (-1.16, 2.81); 0.019 0.54 (-0.48, 0.59); 0.737 0.06 (-0.48, 0.59); 0.737 0.06 (-0.48, 0.44); 0.384 0.33 (-0.13, 0.731; 0.04 (-0.48, 1.29); 0.737 0.04 (-0.48, 1.29); 0.737 0.04 (-0.48, 0.44); 0.384 0.33 (-0.13, 0.731; 0.04 (-0.48, 0.19); 0.771 0.04 (-0.48, 0.44); 0.787 0.04 (-0.44, 0.44); 0.777 0.04 (-0.45, 0.51); 0.777 0.04 (-0.44, 0.44); 0.777 0.04 (Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97 6.22 6.23 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.25 4.25 4.26 5.26 4.11 3.71 4.78 3.82 4.77 5.21 5.08 4.14 4.61 	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-ho Relaxation Time Bolbos et al. (2008) K Li et al. (2010) Haughon et al. (2012) Set et al. (2013) Set et al. (2015) East et al. (2015) East et al. (2015) East et al. (2015) Pedoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2015) Pedoia et al. (2016) Set et al. (2017) Pedoia et al. (2017) Petotosimone et al. (2017) T2 Relaxation Time Bining et al. (2017) T2 Relaxation Time Bining et al. (2017) Nu et al. (2011) Biam et al. (2012) Suere-ching et al. (2013) Suere-ching et al. (2013) Suere-ching et al. (2013) Suere-ching et al. (2013) Suere et al. (2015) H Li et al. (2015) H Li et al. (2016) Su et al. (2016) Su et al. (2016) Su et al. (2018) Tan et al. (2018) Tan et al. (2018) Tan et al. (2018)	7); z=5.19; Test for Het Healthy / Ar Risk 15 / 16 10 / 12 11 / 11 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 24 / 42 16 / 15 17 / 33 17 zes for Heter 58 / 19 10 / 12 30 / 42 33 / 128 66 / 57 42 / 42 33 / 128 58 / 19 10 / 12 30 / 42 33 / 128 58 / 19 10 / 12 30 / 42 43 / 12 16 / 15 15 / 15 15 / 30 10 / 10 10 / 12 30 / 42 43 / 12 16 / 15 15 / 15 15 / 30 10 / 10 10 / 12 30 / 42 43 / 12 16 / 15 15 / 15 15 / 30 10 / 10 17 / 17 17 / 17 / 17 / 17 17 / 17 / 17 / 17 17 / 17 / 17 / 17 / 17 / 17 / 17 /	comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Reconstruction ACL Injury Cartilage Injury OAI Incidence Mild Vants ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Injury ACL Reconstruction ACL Reconstruction ACL Injury ACL Reconstruction ACL Injury ACL Reconstruction ACL Injury ACL Reconstruction ACL Injury ACL Reconstruction ACL Injury ACL Reconstruction ACL Conjury ACL Reconstruction ACL Construction ACL Injury ACL Reconstruction ACL Injury ACL Reconstruction ACL Injury ACL Injury ACL Reconstruction ACL Conjury ACL Reconstruction ACL Injury ACL	I Scanner GE GE GE GE GE GE Philips GE GE Siemens Siemens GE Siemens GE Siemens GE Siemens Siemens GE Siemens	Strength 3.0T 3.	SMD (95% C1); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.83); 0.051 -0.58 (-1.15, -0.02); 0.044 0.97 (-0.08, 1.66); 0.031 0.61 (-0.02, 1.23); 0.053 0.01 (-0.59, 0.660); 0.931 0.36 (-0.23, 0.96); 0.234 -0.16 (-0.48, 0.23); 0.644 0.39 (-0.48, 0.23); 0.644 0.39 (-0.48, 0.23); 0.644 0.39 (-0.48, 0.23); 0.644 0.30 (-0.47, 0.96); 0.381 0.19 (-0.01, 0.38); 0.054 -0.17 (-0.69, 0.35); 0.519 0.08 (-0.73; 0.001 0.41 (-0.07, -0.55); 0.3001 1.22 (0.75, 1.48); -0.001 0.41 (-0.77, 0.55); 0.3001 0.41 (-0.77, 0.55); 0.3001 0.41 (-0.77, 0.55); 0.3001 0.41 (-0.77, 0.55); 0.3001 0.41 (-0.37, 0.57); 0.170 0.55 (-0.13, 1.28); 1.264 0.71 (-0.48, 0.65); 0.787 0.44 (-0.34, 0.53); 0.757 0.44 (-0.34, 0.43); 0.787 0.44 (-0.34, 0.43); 0.787 0.44 (-0.34, 0.51); 0.778 0.44 (-0.34, 0.51); 0.778 0.45 (-0.54); 0.778 0.45 (-0	% Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.23 7.23 7.23 7.23 7.23 7.23 6.27 6.22 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.25 4.25 4.25 5.26 4.11 3.71 4.78 3.82 5.26 4.37 5.30 3.91 4.25 5.26 4.37 5.30 3.91 4.25 5.26 4.37 5.30 3.91 4.25 5.26 4.37 5.30 3.91 4.25 5.26 4.37 5.30 3.91 4.25 5.26 4.37 5.30 3.91 4.25 5.26 4.37 5.30 3.91 4.25 5.26 4.37 5.30 3.91 4.25 5.26 4.37 5.30 3.91 4.25 5.26 4.37 5.30 3.91 4.25 5.26 4.11 3.71 5.08 4.38 4.42 5.26 4.37 5.30 5.31 4.38 4.14 4.61 4.06	-2 -1 0 1 2 3 4 SMD (95% CI)
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-De Relaxation Time Bollos et al. (2008) X Li et al. (2013) Theologis et al. (2013) Theologis et al. (2015) Zaid et al. (2015) Zaid et al. (2015) Zaid et al. (2015) Pedioia et al. (2015) Pedioia et al. (2015) Pedioia et al. (2017) Pedifier et al. (2017) Pedifier et al. (2017) Petersonome et al. (2017) Tag et al. (2010) Na et al. (2011) Na et al. (2011) Hovis et al. (2011) Mais et al. (2011) Sue et al. (2011) Sue et al. (2012) Sue et al. (2013) Sue et al. (2013) Sue et al. (2013) Sue et al. (2015) Bae et al. (2015) Bae et al. (2015) Bae et al. (2015) Bae et al. (2016) Painnieri-Simith et al. (2016) Sue et al. (2016) Wirth et al. (2017) Kogan et al. (2018) Wang et al. (2018)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 10 / 12 10 / 12 11 / 11 16 / 15 8 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 40 15 / 40 15 / 40 15 / 40 15 / 40 24 / 24 12 / 33 12 / 12 30 / 42 33 / 128 65 / 57 10 / 12 30 / 42 33 / 128 65 / 57 10 / 12 30 / 42 33 / 128 65 / 57 10 / 12 30 / 42 33 / 128 15 / 15 15 / 15 15 / 15 15 / 15 15 / 15 15 / 15 15 / 15 16 / 15 17 / 20 17 / 27 11 / 11 20 / 40 16 / 15 17 / 20 17 / 27 11 / 11 20 / 40 16 / 15 17 / 27 17 / 11 20 / 40 17 / 27 17 / 11 20 / 40 16 / 15 17 / 27 17 / 11 20 / 40 16 / 15 17 / 27 17 / 11 20 / 40 21 / 27 21	comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction PCL Deficient ACL Reconstruction PCL Deficient ACL Reconstruction PCL Deficient ACL Reconstruction ACL Reconstruction ACL Injury ACL Reconstruction ACL Reconstru	I Scanner GE GE GE GE Philips GE Philips GE GE Siemens	Strength 3.0T 3.	SMD (95% C1); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.484 1.18 (-0.05, 2.40); 0.060 -0.58 (-1.15, -0.02); 0.044 0.87 (-0.08, 1.66); 0.031 0.61 (-0.02, 1.23); 0.083 0.36 (-0.22); 0.083 0.36 (-0.22); 0.083 0.36 (-0.22); 0.083 0.36 (-0.22); 0.083 0.37 (-0.08, 1.66); 0.031 0.47 (-0.15, 1.09); 0.144 0.36 (-0.40, 0.99); 0.404 0.36 (-0.40, 0.99); 0.404 0.37 (-0.16, 1.07); 0.154 0.37 (-0.16, 0.35); 0.519 0.07 (-0.16, 0.35); 0.519 0.07 (-0.16, 0.35); 0.519 0.07 (-0.17, 0.55); 0.300 1.26 (-0.75, 1.08); 0.101 1.68 (-1.25, 2.100; -0.001 1.68 (-1.25, 2.100; -0.001 0.16 (-0.48, (-29); -0.34 0.033 (-0.33, 0.65); 0.732 0.04 (-0.48, 1.29); -0.373 0.05 (-0.34, 1.136); 0.211 0.07 (-0.44, 0.63); 0.737 0.07 (-0.44, 0.14); 0.848 0.03 (-0.35, 0.98); 0.371 0.07 (-0.44, 1.130; 0.211 0.07 (-0.44, 1.130; 0.211 0.07 (-0.44, 1.130; 0.211 0.07 (-0.44, 0.14); 0.848 0.030 (-0.15, 0.98); 0.035 0.00 (-0.1, 1.90; 0.04 0.031 (-0.35, 0.98); 0.371 0.05 (-0.34, 1.130; 0.211 0.07 (-0.44, 0.14); 0.848 0.030 (-0.54, 1.20; 0.211 0.07 (-0.44, 0.14); 0.848 0.030 (-0.54, 1.20; 0.211 0.07 (-0.44, 1.28); 0.005 0.000 (0.1, 1.98); 0.046 0.71 (-0.06, 1.48); 0.005	 Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.78 4.76 6.75 7.29 7.23 12.35 5.81 6.97 6.22 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.30 3.91 4.25 4.26 4.11 3.71 4.78 3.82 4.77 5.21 5.08 4.38 4.14 4.61 4.06 	HEALTHY AT RISK FOR KNEE OA
Random Effects Model (n=1,887 b MEDIAL TIBIA TI-ho Relaxation Time Bolbos et al. (2008) K Li et al. (2010) Haughon et al. (2012) Su et al. (2013) Su et al. (2013) Edit (2015) Edit (2015) Edit (2015) Pedoia et al. (2016) Su et al. (2016) Su et al. (2017) Petrosionne et al. (2017) Pietrosinone et al. (2017) Terg et al. (2017) Pietrosinone et al. (2017) Terg et al. (2017) Pietrosinone et al. (2017) Terg et al. (2017) Nu et al. (2011) Ku et al. (2011) Ku et al. (2011) Ku et al. (2011) Suser-Schig et al. (2013) Suser-Schig et al. (2013) Suser-Schig et al. (2013) Suser-Schig et al. (2015) H Li et al. (2015) H Li et al. (2015) Su et al. (2016) Su et al. (2017) Kindon Effects Model (n=1,458) Kandom Effects Model (n=1,458) Kandom Effects Model (n=1,458)	7); z=5.19; Test for Het Healthy / At Risk 15 / 16 10 / 12 16 / 15 18 / 18 6 / 6 25 / 25 10 / 20 19 / 22 14 / 49 15 / 40 24 / 49 15 / 40 27 / 33 12 / 33 23 / 33 23 / 33 23 / 33 23 / 33 23 / 33 23 / 33 27 / 37 26 / 57 27 / 37 26 / 57 27 / 37 26 / 57 27 / 37 27 /	comparison ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Medial Meniscal Tear ACL Injury ACL Reconstruction ACL Injury ACL Reconstruction ACL Injury ACL Reconstruction ACL Injury ACL Reconstruction ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Injury ACL Reconstruction ACL Injury	I Scanner GE GE GE GE GE GE Philips GE GE Philips GE GE Siemens Siemen	Strength 3.0T 3.	SMD (95% C1); p -0.25 (-0.10, 0.45); 0.482 0.06 (-0.78, 0.99); 0.889 0.06 (-0.78, 0.99); 0.889 0.06 (-0.84, 0.84); 1.000 0.11 (-0.59, 0.83); 0.050 0.11 (-0.59, 0.83); 0.050 0.15 (-0.15, -0.93); 0.048 0.16 (-0.02, 1.23); 0.050 0.01 (-0.59, 0.660); 0.931 0.05 (-0.15, -0.03); 0.040 0.01 (-0.59, 0.660); 0.931 0.05 (-0.15, -0.03); 0.040 0.03 (-0.42, 0.93); 0.054 0.03 (-0.43, 0.63); 0.075 0.054 (-0.44, 0.054); 0.075 0.054 (-0.44, 0.13); 0.054 0.07 (-0.46, 0.61); 0.075 0.091 0.044, 0.051; 0.001 0.04 (-0.43, 0.051; 0.075 0.054 (-0.44, 0.13, 0.771; 0.054 (-0.44, 0.13, 0.771; 0.054 (-0.44, 0.154; 0.035 0.07 (-0.46, 0.61; 0.771; 0.054 (-0.44, 0.654; 0.075) 0.07 (-0.46, 0.61; 0.771; 0.054 (-0.44, 0.154; 0.035 0.07 (-0.46, 0.61; 0.771; 0.054 (-0.44, 0.154; 0.035 0.07 (-0.46, 0.61; 0.771; 0.054 (-0.454; 0.055) 0.07 (-0.46, 0.61; 0.771; 0.071 (-0.4	 % Weight 5.66 4.32 4.36 5.69 6.33 2.25 7.29 7.23 7.23 7.23 7.23 7.23 7.23 6.22 6.23 6.23 4.82 3.84 4.42 5.09 5.26 4.97 5.20 3.91 4.25 4.25 4.25 4.25 4.25 4.25 5.26 4.11 3.71 4.78 3.82 4.77 5.08 4.38 4.14 4.61 4.06 	-2 -1 0 1 2 3 4 SMD (95% CI)

Fig. 2 (See legend on next page.)

(See figure on previous page.)

Fig. 2 a Forest plots illustrating individual and pooled SMD for differences in T1rho and T2 relaxation time of medial femoral articular cartilage between healthy controls and participants at risk for knee OA. SMD = standardized mean difference, 95% CI = 95% confidence interval, ACL = anterior cruciate ligament, PCL = posterior cruciate ligament, ICRS=International Cartilage Repair Society, OAI=Osteoarthritis Initiative, OA = osteoarthritis, GE = General Electric, T = Tesla. **b** Forest plots illustrating individual and pooled SMD for differences in T1rho and T2 relaxation time of medial tibial articular cartilage between healthy controls and participants at risk for knee OA. SMD = standardized mean difference, 95% CI = 95% confidence interval, ACL = anterior cruciate ligament, PCL = posterior cruciate ligament, ICRS=International Cartilage Repair Society, OAI=Osteoarthritis Initiative, OA = osteoarthritis, GE = General Electric, T = Tesla

study selection and data extraction; assessment of study quality; assessment and adjustment for publication bias; and pre-planned meta-analyses including sensitivity analyses based on a priori hypotheses in the event of substantial heterogeneity. Limitations of the present meta-analyses may include pooling participants at risk, as there are likely several different phenotypes for the development of OA [90]. Our subgroup analyses suggest that T2 and T1p values of articular cartilage are slightly different across participants with various risk factors, and future research should explore those differences further. A common methodological limitation in the studies included in this review is the lack of blinding and/or reporting of blinding procedures. Other limitations include those inherent to cross-sectional versus prospective designs that measure change in patient status over time.

Importantly, there was considerable variability between MRI methods, including scanners, coils, software, scanning protocols, pulse sequences, and post-processing, which can all influence T2 or T1p relaxation. For example, knee articular cartilage T2 relaxation time is inversely proportional to magnetic field strength [96], and can differ significantly when using different brands of scanners of the same advertised field strength [97]. In this review alone, four brands of scanners, and two magnet strengths were identified across studies (Table 1). T2 relaxation time is significantly prolonged when using a phased-array knee coil compared to a quadrature transmit receive knee coil [98]. Sixteen different knee coils were used in studies in this review (Table 1), with a wide variety of phased-array and quadrature coils. Choice of pulse sequence can also significantly affect relaxation time, with a difference of as much as 10 ms observed across commonly used sequences [99, 100]. Knowledge of the context and collection methods is important when comparing compositional MRI values across the literature, as a 1.8 ms increase in T2 relaxation time is representative of a 1% increase in free water content when comparing within the same participant [101, 102]. Seventeen different pulse sequences were used to collect the data presented in this review (Table 1). Pre-scan unloading protocol is an important consideration that varies across studies, as T2 relaxation time increases with unloading time due to water reuptake into the cartilage [93]. Post-processing and segmentation can also affect T2 and T1 ρ values, such as how the assessor defines the ROI, ROI variance between studies, number of slices included in the ROI [103], proximity of borders to other tissues, and partial volume effects [104]. Continued use of proposed standardized nomenclature and ROI definition will improve comparability of ROI's across studies and sites [105]. Taken together, these findings identify substantial differences in methods across testing sites, suggest considerable caution should be adopted when making comparisons across studies, and highlight the limitation in the current state of T2 or T1 ρ relaxation as imaging biomarkers.

These findings suggest future use of compositional MRI measures as potential biomarkers would benefit considerably from a greater understanding of the effects of different testing methods [106] and greater standardization of data collection and analysis measures [34]. The importance of greater standardization across testing sites is underscored by the variability in results of studies evaluating the test-retest reliability of compositional MRI measures, even when the exact same methods are used [28]. For example, studies evaluating test-retest reliability using the same testing conditions report intra-class correlation coefficients (ICC) ranging from 0 to 0.98 [107, 108], and coefficients of variation (CV) ranging from 1.7 to 22.2 [65, 96-98, 106, 109-116]. Fewer studies evaluating test-retest reliability using similar methods but different scanner manufacturers suggest ICCs ranging from 0.2 to 0.93 [107], and CVs ranging from 2.3 to 6.3 [97, 106]. Arguably, the most important consideration regarding improved reliability of compositional MRI as an imaging biomarker is comparability of values across scanners and centers. The present findings therefore support current international efforts from researchers and vendors to improve sequences, calibration, and standardization [17], such as the Radiological Society of North America Quantitative Imaging Biomarker Alliance [117], and multicenter studies such as the OAI [118]. In addition to these efforts, another approach may be the use of calibration phantoms [119] to develop correction functions to account for varying hardware and software used by different centers [17].

By pooling within-study comparisons, the present primary analysis indicates that T2 and T1 ρ relaxation times

Page 7	12	of	18
--------	----	----	----

11rho Relaxation Time							
11 Tho Relaxation Time	Healthy / At Risk	Comparison	Scanner	Strength	SMD (95% CI); p	% Weight	HEALTHY AT RISK FOR KNEE
albos at al. (2008)	15/16	ACL Inium	CE	3 OT	0 16 (0 54 0 87): 0 652	5.07	
laughom et al. (2012)	11/11	ACL Injury	GE	3.0T	0.51 (-0.34, 1.36); 0.237	3.50	
1 et al. (2013)	16/15	ACL Reconstruction	GE	3.0T	0.38 (-0.33, 1.10); 0.290	4.99	
Theologis et al. (2014)	18/18	ACL Reconstruction	GE	3.0T	0.37 (-0.29, 1.03); 0.269	5.81	
Okazaki et al. (2015)	6/6	PCL Deficient	Philips	3.0T	1.67 (0.36, 2.99); 0.013	1.46	
Laid et al. (2015)	25/25	ACL Reconstruction	GE	3.0T	0.09 (-0.46, 0.65); 0.740	8.20	
Dsaki et al. (2015)	14/49	ACL Injury	Philips	3.0T	0.52 (-0.08, 1.12); 0.089	6.99	
edoia et al. (2016)	15/40	ACL Injury	GE	3.0T	0.76 (0.15, 1.37); 0.014	6.78	_
u et al. (2016)	54 / 54	ACL Injury	GE	3.0T	0.28 (-0.10, 0.66); 0.148	17.57	
an der Heijden et al. (2016)	70764	Patellofemoral Pain	GE	3.01	0.26 (-0.09, 0.60); 0.142	21.79	
faiffar at al. (2017)	21/21	ACL Injury	GE	3.01	0.55 (-0.15, 1.25); 0.124	5.13	
etrosimone et al. (2017)	18/18	ACL Reconstruction	Siemens	3.0T	0.32 (-0.34, 0.98); 0.338	5.84	
andom Effects Model (n=670):	z=4.32; Test for Hetero	ogeneity: I ² =0.0%, p=0.762			0.35 (0.19, 0.51); <0.001		•
2 Relaxation Time							
ining et al. (2008)	60/9	Chondral Damage	GE	1.5T	3.77 (2.83, 4.71); <0.001	4.13	
Ku et al. (2011)	30/42	Cartilage Injury	Philips	3.0T	2.77 (2.12, 3.42); <0.001	4.93	
lovis et al. (2011)	33 / 128	OAI Incidence	Siemens	3.0T	1.23 (0.83, 1.64); <0.001	5.54	
ai et al. (2011)	143 / 17	Meniscus Grade 1-2	GE	1.5T	0.13 (-0.38, 0.63); 0.627	5.31	
aum et al. (2012)	42/42	Unilateral Symptoms	Siemens	3.01	0.45 (0.00, 0.87); 0.049	5.48	
auerschnig et al. (2013)	12/12	Mild Varus	Siemens	1.5T	0.40 (-0.40, 1.21); 0.327	4.50	
n et al. (2013)	16/15	ACL Reconstruction	GE	3.01	0.36 (-0.35, 1.07); 0.322	4.77	
ubhawong et al. (2013)	15/15	Patellofemoral Pain	Siemens	3.01	-0.40 (-1.13, 0.32); 0.275	4.73	
iebl et al. (2014)	20/22	OAI Incidence	Siemens	3.01	0.34 (-0.22, 0.90); 0.239	5.17	
Li et al. (2015)	15/30	ACL Reconstruction	Siemens	3.01	1.80 (1.07, 2.51): <0.001	4 74	
ae et al. (2015)	10/10	ACL Reconstruction	Siemens	3.0T	0.06 (-0.82 0.03) 0.809	4.74	
an der Heijden et al. (2016)	70/64	Patellofemoral Pain	GE	3.0T	-0.10 (-0.44, 0.24): 0.561	5.67	
heno et al. (2016)	27/27	ACL Reconstruction	Philips	3.0T	0.04 (-0.49, 0.58): 0.875	5.24	
almieri-Smith et al. (2016)	11/11	ACL Injury	Philips	3.0T	0.76 (-0.11, 1.63): 0.086	4.34	
u et al. (2016)	54 / 54	ACL Injury	GE	3.0T	0.14 (-0.24, 0.52); 0.470	5.60	
/irth et al. (2016)	89/28	At risk for OA	Siemens	3.0T	0.37 (-0.06, 0.80); 0.089	5.49	
ogan et al. (2018)	15/15	ACL Reconstruction	GE	3.0T	0.55 (-0.18, 1.28); 0.317	4.72	
ao et al. (2018)	23/23	SCL Injury	Siemens	3.0T	0.69 (0.10, 1.29); 0.023	5.08	
/ang et al. (2018)	9 / 28	ACL Reconstruction	Siemens	3.0T	0.46 (-0.30, 1.21); 0.234	4.64	
andom Effects Model (n=1,424): z=3.88; Test for Hete	erogeneity: I ² =87.1%, p<0.00	ı		0.68 (0.33, 1.02); <0.001		
							SMD (95% CI)
) ateral tibia							SMD (95% CI)
C ATERAL TIBIA	Healthy / At Risk	Comparison	Scanner	Strength	SMD (95% CI); p	% Weight	SMD (95% CI) HEALTHY AT RISK FOR KNEE
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008)	Healthy / At Risk	Comparison	Scanner GE	Strength 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833	% Weight	SMD (95% CI) HEALTHY AT RISK FOR KNEE
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012)	Healthy / At Risk 15 / 16 11 / 11	Comparison ACL Injury ACL Injury	Scanner GE GE	Strength 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592	% Weight 9.13 8.59	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) a et al. (2013)	Healthy / At Risk 15 / 16 11 / 11 16 / 15	Comparison ACL Injury ACL Injury ACL Reconstruction	Scanner GE GE GE	Strength 3.0T 3.0T 3.0T	SMD (95% CD; p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444	% Weight 9.13 8.59 9.12	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) u et al. (2013) heologis et al. (2014)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18	Comparison ACL Injury ACL Reconstruction ACL Reconstruction	Scanner GE GE GE GE	Strength 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77	% Weight 9.13 8.59 9.12 9.33	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) a et al. (2013) neologis et al. (2014) kazaki et al. (2015)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6	Comparison ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient	Scanner GE GE GE GE Philips	Strength 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033	% Weight 9.13 8.59 9.12 9.33 6.86	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) a et al. (2013) heologis et al. (2014) kazaki et al. (2015) saki et al. (2015)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49	Comparison ACL Injury ACL Restruction ACL Reconstruction PCL Deficient ACL Injury	Scanner GE GE GE Philips Philips	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.08 (-0.51, 0.68); 0.783	% Weight 9.13 8.59 9.12 9.33 6.86 9.55	SMD (95% CI)
C ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) a et al. (2013) heologis et al. (2014) kazaki et al. (2015) saki et al. (2015) sioia et al. (2016)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40	Comparison ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Right ACL Injury	Scanner GE GE GE Philips Philips GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.356, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.06 (-0.51, 0.68); 0.783 0.04 (-0.55, 0.63); 0.894	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) a et al. (2013) heologis et al. (2014) kazaki et al. (2015) saki et al. (2015) sdoia et al. (2016) a et al. (2016)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54	Comparison ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury	Scanner GE GE GE Philips Philips GE GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.44 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.08 (-0.51, 0.68); 0.783 0.04 (-0.55, 0.63); 0.894 -1.62 (-2.06, -1.19); -0.001	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) 1 et al. (2013) neologis et al. (2014) kazaki et al. (2015) sidi et al. (2015) sidi et al. (2016) ret al. (2016) sidi et al. (2017)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40	Comparison ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury	Scanner GE GE GE Philips GE GE GE GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.08 (-0.51, 0.68); 0.783 0.04 (-0.55, 0.63); 0.894 -1.62 (-20, 6-1.19); 0.001 -0.09 (-0.79, 0.60); 0.795	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18	SMD (95% CI)
C ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) a et al. (2013) heologis et al. (2014) kazaki et al. (2015) sdoi a et al. (2015) sdoi a et al. (2017) 'eiffer et al. (2017) 'eiffer et al. (2017)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 19	Comparison ACL Injury ACL Injury ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury	Scanner GE GE GE Philips Philips GE GE GE Siemens	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.04 (-0.55, 0.63); 0.894 -1.62 (-2.06, -1.19); -0.001 -0.09 (-0.79, 0.60); 0.795 0.91 (0.27, 1.54); 0.005	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time algome et al. (2008) aughom et al. (2012) et al. (2013) ret al. (2013) saki et al. (2015) saki et al. (2015) sdoia et al. (2016) ret al. (2016) ret al. (2016) ret al. (2017) efffer et al. (2017) aughom Effer at Maddien affect aughom Effert at Maddien affect aughom Effert at Maddien affect aughom Effert at Maddien affect aughom Effert at Maddien affect aughom Effect at Maddien	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 70 / 61 17 / 17 18 / 18	Comparison ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction	Scanner GE GE GE Philips GE GE GE Siemens Siemens	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.08 (-0.51, 0.68); 0.783 0.04 (-0.55, 0.63); 0.894 -1.62 (-2.66, -1.19); 0.001 -0.09 (-0.79, 0.60); 0.795 0.91 (0.27, 1.54); 0.005 0.98 (0.28, 1.67); 0.006	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.009 9.18 9.40 9.19	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) a et al. (2012) a et al. (2013) saki et al. (2015) saki et al. (2015) saki et al. (2015) saki et al. (2015) saki et al. (2016) a et al. (2016) saki et al. (2017) et al. (2017) et rossimone et al. (2017) andom Effects Model (n=486); 2 belanation Effect	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=0.61; Test for Heter	Comparison ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction	Scanner GE GE GE Philips GE GE Siemens Siemens	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.04 (-0.55, 0.63); 0.894 1-62 (-2.66, -1.19); -0.001 1-0.09 (-0.79, 0.60); 0.795 0.91 (0.27, 1.54); 0.005 0.98 (0.28, 1.67); 0.006 0.17 (-0.38, 0.72); 0.543	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) u et al. (2013) heologis et al. (2014) kazaki et al. (2015) saki et al. (2015) saki et al. (2015) edoia et al. (2016) edoia et al. (2016) edoia et al. (2017) feiffer et al. (2017) ietrosimone et al. (2017) andom Effects Model (n=486): 2 Relaxation Time Stringe et al. (2009)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=0.61; Test for Heter	Comparison ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction	Scanner GE GE GE Philips GE GE GE Siemens Siemens	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.04 (-0.55, 0.63); 0.783 0.04 (-0.55, 0.63); 0.783 0.04 (-0.55, 0.63); 0.783 1.62 (-2.06, -1.19); 0.001 -0.09 (-0.79, 0.60); 0.795 0.91 (0.27, 1.54); 0.005 0.98 (0.28, 1.67); 0.006 0.17 (-0.38, 0.72); 0.543 2.83 (1.70, 3.86); -0.001	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) art al. (2013) heologis et al. (2014) karzki et al. (2015) saki et al. (2015) saki et al. (2015) sociai et al. (2017) doine et al. (2017) etrosimone et al. (2017) andom Effects Model (n=436): 22 Relaxation Time ining et al. (2008) w et al. (2011)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42	Comparison ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction	Scanner GE GE Philips Philips GE GE Siemens Siemens Siemens	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.08 (-0.51, 0.68); 0.783 0.04 (-0.55, 0.63); 0.894 -1.62 (-2.06, -1.19); <-0.001 -0.09 (-0.79, 0.60); 0.795 0.91 (0.27, 1.54); 0.005 0.98 (0.28, 1.67); 0.006 0.17 (-0.38, 0.72); 0.543 2.83 (1.79, 3.86); <-0.001 2.01 (-2.74, 3.57); -0.01	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) u et al. (2012) u et al. (2013) saki et al. (2015) sedia et al. (2015) sedia et al. (2015) edoia et al. (2016) edoia et al. (2017) feiffer et al. (2017) iterissimone et al. (2017) andom Effects Model (n=486): 2 Relaxation Time ining et al. (2008) u et al. (2011)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128	Comparison ACL Injury ACL construction ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction	Scanner GE GE GE Philips GE GE Siemens Siemens Siemens Siemens	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.04 (-0.55, 0.63); 0.894 -1.62 (-2.66, -1.19); -0.001 -0.09 (-0.79, 0.60); 0.795 0.91 (0.27, 1.54); 0.005 0.98 (0.28, 1.67); 0.006 0.17 (-0.38, 0.72); 0.543 2.83 (1.79, 3.86); <0.001 2.91 (2.24, 3.57); <0.001	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19 4.00 5.28 4.00 5.28	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) te tal. (2013) heologis et al. (2014) kazaki et al. (2015) saki et al. (2015) saki et al. (2015) saki et al. (2016) zer tal. (2016) zer tal. (2016) zer tal. (2016) ser tal. (2017) direfier et al. (2017) direfier et al. (2017) andom Effects Model (n=486): 2 Relaxation Time ining et al. (2011) ovis et al. (2011)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 /21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128	Comparison ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence	Scanner GE GE GE Philips GE GE GE Siemens Siemens Siemens Siemens GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.04 (-0.55, 0.63); 0.783 0.04 (-0.75, 0.03); 0.894 -1.62 (-2.06, -1.19); -0.001 -0.09 (-0.79, 0.60); 0.795 0.91 (0.27, 1.54); 0.005 0.98 (0.28, 1.67); 0.006 0.17 (-0.38, 0.72); 0.543 2.83 (1.79, 3.86); <0.001 2.91 (2.24, 3.57); <0.001 1.06 (0.66, 1.46); <0.001 2.91 (0.23, 0.69), 0.472	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19 4.00 5.28 6.18 5.86	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) u et al. (2013) heologis et al. (2014) kazaki et al. (2015) saki et al. (2015) saki et al. (2015) saki et al. (2016) u et al. (2016) deia et al. (2017) ietrosimone et al. (2017) andom Effects Model (n=486): 2 Relaxation Time ining et al. (2008) u et al. (2011) ai et al. (2011) ai et al. (2012)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42	Comparison ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence Memiscus Grade 1-2	Scanner GE GE GE Philips Philips GE GE Siemens Siemens Siemens Siemens Siemens	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.08 (-0.51, 0.68); 0.783 0.04 (-0.55, 0.63); 0.894 -1.62 (-2.06, -1.19); <-0.001 -0.09 (-0.79, 0.60); 0.795 0.91 (0.27, 1.54); 0.005 0.98 (0.28, 1.67); 0.006 0.17 (-0.38, 0.72); 0.543 2.83 (1.79, 3.86); <0.001 2.91 (2.24, 3.57); <0.001 1.06 (0.66, 1.46); <0.001 0.19 (0.32, 0.69); 0.472 1.36 (0.68, 1.83); <-0.001 0.19 (0.32, 0.69); 0.472 1.36 (0.68, 1.83); <-0.001 0.19 (0.32, 0.69); 0.472 0.56 (0.56, 1.83); <-0.001 0.57 (0.68, 1.83); <-0.001 0.57 (0.56, 1.83);	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19 4.00 5.28 6.18 5.86 6.18 5.86	SMD (95% CI)
ATERAL TIBIA Inho Relaxation Time Olibos et al. (2008) aughom et al. (2012) arc et al. (2012) arc et al. (2013) saki et al. (2015) saki et al. (2015) saki et al. (2015) sedia et al. (2017) etosimone et al. (2017) detosimone et al. (2017) andom Effects Model (n=486): 2 Relaxation Time Timing et al. (2011) art et al. (2013)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 12 / 12	Comparison ACL Injury ACL Construction ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence Meniscus Grade 1-2 Unilateral Symptoms Mild Varus	Scanner GE GE GE Philips GE GE GE Siemens Siemens GE Philips Siemens GE Siemens GE	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 1.5T 3.0T 1.5T 3.0T 1.5T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.08 (-0.51, 0.68); 0.783 0.04 (-0.55, 0.63); 0.894 -1.62 (-2.66, -1.19); -0.001 -0.09 (-0.79, 0.60); 0.795 0.91 (0.27, 1.54); 0.005 0.98 (0.28, 1.67); 0.006 0.17 (-0.38, 0.72); 0.543 2.83 (1.79, 3.86); <0.001 2.91 (2.24, 3.57); <0.001 1.06 (0.66, 1.46); <0.001 0.19 (0.32, 0.69); 0.472 1.36 (0.68, 1.83); <0.001	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19 4.00 5.28 6.18 5.86 5.95 4.77	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) aughom et al. (2012) aughom et al. (2013) heologis et al. (2014) kazaki et al. (2015) sdoia et al. (2016) adoia et al. (2016) et al. (2016) et al. (2017) ettrosimone et al. (2017) andom Effects Model (n=486): 2 Relaxation Time ining et al. (2011) ovis et al. (2011) ovis et al. (2011) ain et al. (2011) ain et al. (2012) uereschning et al. (2013)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 12 / 12 16 / 15	Comparison ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence Meniscus Grade 1-2 Unilateral Symptoms Mild Varus ACL Reconstruction	Scanner GE GE GE Philips Philips GE GE Siemens Siemens Siemens GE Siemens Siemens GE	Strength 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.04 (-0.55, 0.63); 0.783 0.04 (-0.55, 0.63); 0.783 0.04 (-0.55, 0.63); 0.783 0.04 (-0.55, 0.63); 0.783 0.04 (-0.75, 0.63); 0.783 0.98 (0.28, 1.67); 0.006 0.17 (-0.38, 0.72); 0.543 2.83 (1.79, 3.86); <0.001 2.91 (2.24, 3.57); <0.001 1.06 (0.66, 1.46); <0.001 0.19 (0.32, 0.69); 0.472 1.36 (0.68, 1.83); <0.001 0.43 (-0.38, 1.24); 0.294 0.45 (-0.26, 1.16); <0.184 0.45 (-0.26, 1.16); <0.001 0.43 (-0.38, 1.24); 0.294 0.45 (-0.26, 1.16); 0.218	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19 4.00 5.28 6.18 5.86 5.95 4.77 5.11	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) u et al. (2013) heologis et al. (2014) kazaki et al. (2015) saki et al. (2015) saki et al. (2015) sector al. (2016) oet al. (2017) ietrostimone et al. (2017) andom Effects Model (n=486): 2 Relaxation Time ining et al. (2001) ai et al. (2011) ai et al. (2011) ai et al. (2012) auerschnig et al. (2013) at et al. (2013) an Ginckel et al. (2013)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 12 / 12 16 / 15 15 / 15	Comparison ACL Injury ACL. Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence Meniscus Grade 1-2 Unilateral Symptoms Mild Varus ACL Reconstruction	Scanner GE GE GE Philips Philips GE GE Siemens Siemens Siemens GE Siemens GE Siemens GE Siemens GE	Strength 3.0T 3.	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.08 (-0.51, 0.68); 0.783 0.04 (-0.55, 0.63); 0.894 1-62 (-2.06, -1.19); -0.001 -0.09 (-0.79, 0.60); 0.795 0.91 (0.27, 1.54); 0.005 0.98 (0.28, 1.67); 0.006 0.17 (-0.38, 0.72); 0.543 2.83 (1.79, 3.86); <0.001 2.91 (2.24, 3.57); <0.001 1.06 (0.66, 1.46); <0.001 0.19 (0.32, 0.69); 0.472 1.36 (0.68, 1.83); <0.001 0.43 (-0.38, 1.24); 0.294 0.45 (-0.26, 1.16); 0.218	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19 4.00 5.28 6.18 5.86 5.95 4.77 5.11 5.10	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olibos et al. (2008) aughom et al. (2012) or et al. (2013) heologis et al. (2014) kazaki et al. (2015) saki et al. (2015) saki et al. (2015) dedia et al. (2017) feiffer et al. (2017) feiffer et al. (2017) andom Effects Model (n=486): 2 Relaxation Time ining et al. (2011) aut et al. (2011) aut et al. (2011) aut et al. (2013) aut al. (2013) aut al. (2013) aut al. (2013) aut al. (2015)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 12 / 12 16 / 15 15 / 15 80 / 50	Comparison ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction Chondral Damage Carillage Injury OAI Incidence Meniscus Grade 1-2 Unilateral Symptoms Mild Varus ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction	Scanner GE GE GE Philips GE GE GE Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 1.5T 3.0T 1.5T 3.0T 1.5T 3.0T 1.5T 3.0T 3.0T 3.0T	$\begin{array}{c} SMD \ (95\% \ CD; \ p\\ 0.08 \ (-0.63, 0.78); \ 0.833\\ 0.23 \ (-0.61, 1.07); \ 0.592\\ 0.28 \ (-0.61, 30.98); \ 0.444\\ 0.10 \ (-0.56, 0.75); \ 0.77\\ 1.37 \ (0.11, 2.62); \ 0.033\\ 0.08 \ (-0.51, 0.68); \ 0.783\\ 0.04 \ (-0.55, 0.63); \ 0.894\\ -1.62 \ (-2.60, -1.19); \ -0.001\\ -0.09 \ (-0.79, 0.60); \ 0.795\\ 0.91 \ (0.27, 1.54); \ 0.005\\ 0.98 \ (0.28, 1.67); \ 0.006\\ \textbf{0.17} \ (-\textbf{0.38}, \textbf{0.72}); \ \textbf{0.543}\\ \textbf{2.83} \ (1.79, 3.86); \ <0.001\\ 2.91 \ (2.24, 3.57); \ <0.001\\ 2.91 \ (2.24, 3.57); \ <0.001\\ 1.06 \ (0.66, 1.46); \ <0.001\\ 0.19 \ (0.32, 0.69); \ 0.472\\ 1.36 \ (0.68, 1.83); \ <0.001\\ 0.45 \ (-0.28, 1.24); \ 0.294\\ 0.45 \ (-0.26, 1.16); \ 0.218\\ 0.03 \ (-0.69, 0.74); \ 0.94\\ 0.56 \ (0.21, 0.92); \ 0.002\\ \end{array}$	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.00 9.18 9.40 9.19 4.00 5.28 6.18 5.86 5.95 4.77 5.11 5.10 6.30	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) te ct al. (2013) heologis et al. (2014) kazaki et al. (2015) sdoi at et al. (2016) zdoi at et al. (2016) zdoi at et al. (2016) zdoi at et al. (2016) zdoi at et al. (2017) detrosimone et al. (2017) etrosimone et al. (2017) andom Effects Model (n=486): 2 Relaxation Time ining et al. (2018) u et al. (2011) ovis et al. (2011) ai et al. (2011) aum et al. (2012) uereschning et al. (2013) an Ginckel et al. (2015) keb et al. (2015)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 12 / 12 16 / 15 15 / 15 80 / 50 60 / 6	Comparison ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence Mild Varus ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction OAI Incidence PCL Deficient	Scanner GE GE GE Philips Philips GE GE Siemens	Strength 3.0T 3.	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.75); 0.77 1.37 (0.11, 2.62); 0.033 0.04 (-0.55, 0.63); 0.783 0.04 (-0.55, 0.63); 0.783 0.04 (-0.55, 0.63); 0.783 0.04 (-0.55, 0.63); 0.783 0.04 (-0.75, 0.63); 0.783 0.98 (0.27, 1.54); 0.005 0.98 (0.28, 1.67); 0.006 0.17 (-0.38, 0.72); 0.543 2.83 (1.79, 3.86); <0.001 2.91 (2.24, 3.57); <0.001 1.06 (0.66, 1.46); <0.001 0.19 (0.32, 0.69); 0.472 1.36 (0.68, 1.83); <0.001 0.43 (-0.38, 1.24); 0.294 0.45 (-0.26, 1.16); 0.218 0.03 (-0.69, 0.74); 0.944 0.56 (0.21, 0.92; 0.002	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19 4.00 5.28 6.18 5.86 5.95 4.77 5.11 5.10 6.30 3.35	SMD (95% CI)
ATERAL TIBIA Inho Relaxation Time Obos et al. (2008) aughom et al. (2012) a et al. (2013) a et al. (2014) kazaki et al. (2015) saki et al. (2015) saki et al. (2015) saki et al. (2016) et al. (2016) et al. (2016) et al. (2017) etrosimone et al. (2017) etrosimone et al. (2017) andom Effects Model (n=486): 2 Relaxation Time ining et al. (2018) u et al. (2011) ai et al. (2011) ai et al. (2011) ai et al. (2012) uerschnig et al. (2013) at Ginckel et al. (2013) et al. (2015) kazaki et al. (2015) kazaki et al. (2015)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 /21 18 /18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 16 / 15 15 / 15 80 / 50 6 / 6 15 / 30	Comparison ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence Meniscus Grade 1-2 Unilateral Symptoms Mild Varus ACL Reconstruction ACL Reconstruction	Scanner GE GE GE Philips Philips GE GE Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens	Strength 3.0T 3.	$\begin{array}{c} SMD \ (95\% \ C1); \ p\\ 0.08 \ (-0.63, 0.78); \ 0.833\\ 0.23 \ (-0.61, 1.07); \ 0.592\\ 0.28 \ (-0.43, 0.98); \ 0.444\\ 0.10 \ (-0.56, 0.75); \ 0.77\\ 1.37 \ (0.11, 2.62); \ 0.033\\ 0.08 \ (-0.51, 0.68); \ 0.783\\ 0.04 \ (-0.55, 0.63); \ 0.894\\ -1.62 \ (-2.66, -1.19); \ -0.001\\ -0.09 \ (-0.79, 0.00); \ 0.795\\ 0.91 \ (0.27, 1.54); \ 0.005\\ 0.98 \ (0.28, 1.67); \ 0.006\\ \textbf{0.17} \ (-0.38, 0.72); \ 0.543\\ \textbf{2.83} \ (1.79, 3.86); < 0.001\\ 2.91 \ (2.24, 3.57); < 0.001\\ 1.06 \ (0.66, 1.46); < 0.001\\ 1.06 \ (0.66, 1.46); < 0.001\\ 1.06 \ (0.66, 1.46); < 0.001\\ 0.19 \ (0.32, 0.69); \ 0.472\\ 1.36 \ (0.68, 1.24); \ 0.294\\ 0.45 \ (-0.26, 1.16); \ 0.218\\ 0.03 \ (-0.69, 0.74); \ 0.944\\ 0.56 \ (0.21, 0.92); \ 0.002\\ 1.38 \ (0.09, 1.60); \ 0.001\\ 0.19 \ (0.02, 0.001)\\ 0.51 \ (0.24, 0.38); \ 0.001\\ 0.56 \ (0.21, 0.92); \ 0.002\\ 1.38 \ (0.09, 1.60); \ 0.001\\ 0.01 \ (0.49, 1.82); \ 0.001\\ 0.56 \ (0.21, 0.92); \ 0.002\\ 0.56 \ (0.21, 0.92); \ 0$	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19 4.00 5.28 6.18 5.86 5.95 4.77 5.11 5.10 6.30 3.35 5.29	SMD (95% CI)
ATERAL TIBIA Inho Relaxation Time olibos et al. (2008) aughom et al. (2012) ret al. (2013) heologis et al. (2014) kazaki et al. (2015) saki et al. (2015) saki et al. (2015) saki et al. (2016) ret al. (2016) ret al. (2016) ret al. (2017) feiffer et al. (2017) terrissimene et al. (2017) andom Effects Model (m=486): 2 Relaxation Time timing et al. (2017) auerschnig et al. (2011) ai et al. (2011) ai et al. (2011) auerschnig et al. (2013) ret al. (2013) an Ginckel et al. (2013) kazaki et al. (2015) kazaki et al. (2015)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 12 / 12 16 / 15 15 / 15 80 / 50 6 / 6 15 / 30 10 / 10	Comparison ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence Menixus Grade 1-2 Unilateral Symptoms Mild Varus ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction	Scanner GE GE GE Philips GE GE GE Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens Siemens	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	$\begin{array}{c} SMD \ (95\% \ CD; \ p\\ 0.08 \ (-0.63, 0.78); \ 0.833\\ 0.23 \ (-0.61, 1.07); \ 0.592\\ 0.28 \ (-0.43, 0.98); \ 0.444\\ 0.10 \ (-0.56, 0.67); \ 0.77\\ 1.37 \ (0.11, 2.62); \ 0.033\\ 0.08 \ (-0.51, 0.68); \ 0.783\\ 0.04 \ (-0.55, 0.63); \ 0.894\\ -1.62 \ (-2.66, -1.19); \ 0.701\\ -0.09 \ (-0.79, 0.60); \ 0.795\\ 0.91 \ (0.27, 1.54); \ 0.001\\ -0.09 \ (-0.79, 0.60); \ 0.795\\ 0.98 \ (0.28, 1.67); \ 0.006\\ 0.17 \ (-0.38, 0.72); \ 0.543\\ \hline 2.83 \ (1.79, 3.86); \ <0.001\\ 2.91 \ (2.24, 3.57); \ <0.001\\ 1.06 \ (0.66, 1.46); \ <0.001\\ 2.91 \ (2.24, 3.57); \ <0.001\\ 1.06 \ (0.66, 1.46); \ <0.001\\ 0.13 \ (0.32, 0.69); \ 0.472\\ 1.36 \ (0.68, 1.38); \ <0.001\\ 0.43 \ (-0.38, 1.24); \ 0.294\\ 0.45 \ (-0.21, 0.22); \ 0.002\\ 1.35 \ (0.09, 2.60); \ 0.035\\ 1.16 \ (0.49, 1.82); \ 0.001\\ 0.20 \ (-0.68, 1.08); \ 0.653\\ \end{array}$	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.009 9.18 9.40 9.19 4.00 5.28 6.18 5.86 5.95 4.77 5.11 5.10 6.30 3.35 5.29 4.52	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) u et al. (2013) heologis et al. (2014) kazaki et al. (2015) saki et al. (2015) saki et al. (2016) edio at al. (2017) edio at al. (2017) edio at al. (2017) ietrosimone et al. (2017) andom Effects Model (n=436) 2 Relaxation Time ning et al. (2011) ovis et al. (2011) ovis et al. (2011) ai et al. (2012) ameres the (2012) ameres the (2012) andom et al. (2013) at et al. (2015) ieth et al. (2015) ieth et al. (2015) ieth et al. (2015) iet et al. (2015)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 /21 18 /18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 12 / 12 16 / 15 15 / 15 80 / 50 6 / 6 15 / 30 10 / 10 27 / 27	Comparison ACL Injury ACL. Injury ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence Meniscus Grade 1-2 Unilateral Symptoms Mild Varus ACL Reconstruction ACL Reconstruction	Scanner GE GE GE Philips Philips GE GE Siemens	Strength 3.0T 3.	$\begin{array}{c} SMD \ (95\% \ C1); \ p\\ 0.08 \ (-0.63, \ 0.78); \ 0.833\\ 0.23 \ (-0.61, \ 1.07); \ 0.592\\ 0.28 \ (-0.43, \ 0.98); \ 0.444\\ 0.10 \ (-0.56, \ 0.75); \ 0.771\\ 1.37 \ (0.11, \ 2.62); \ 0.033\\ 0.08 \ (-0.51, \ 0.68); \ 0.783\\ 0.04 \ (-0.55, \ 0.63); \ 0.894\\ -1.62 \ (-2.06, \ -1.19); \ c.001\\ -0.09 \ (-0.79, \ 0.60); \ 0.775\\ 0.91 \ (0.27, \ 1.54); \ 0.005\\ 0.98 \ (0.28, \ 1.67); \ 0.006\\ \textbf{0.17 \ (-0.38, \ 0.72); \ 0.543\\ \hline \textbf{0.17 \ (-0.38, \ 0.72); \ 0.543\\ \hline \textbf{0.16} \ (-0.66, \ 1.46); \ c.0001\\ 2.91 \ (2.24, \ 3.57); \ c.0001\\ 1.06 \ (0.66, \ 1.46); \ c.0001\\ 0.19 \ (0.32, \ 0.69); \ 0.472\\ 1.36 \ (0.68, \ 1.83); \ c.0001\\ 0.43 \ (-0.38, \ 1.24); \ 0.244\\ 0.45 \ (-0.26, \ 1.16); \ c.218\\ 0.03 \ (-0.69, \ 0.74); \ 0.944\\ 0.45 \ (-0.28, \ 1.03); \ 0.035\\ 1.16 \ (0.49, \ 1.82); \ 0.001\\ 0.35 \ (-0.39, \ 0.68); \ 0.657\\ \hline \end{array}$	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19 4.00 5.28 6.18 5.86 5.95 4.77 5.11 5.10 6.30 3.35 5.29 4.52 5.75	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) u et al. (2013) tet al. (2014) kazaki et al. (2015) edia et al. (2015) edia et al. (2016) edia et al. (2016) edia et al. (2017) feiffer et al. (2017) ietrosimone et al. (2017) ietrosimone et al. (2017) andom Effects Model (n=486): 2 Relaxation Time ining et al. (2011) ai et al. (2012) uersching et al. (2013) uet et al. (2015) kazaki et al. (2015) kazaki et al. (2015) ai et al. (2015) ai et al. (2015) ai et al. (2015) ai et al. (2015) heno et al. (2016) almieri-Smith et al. (2016)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 16 / 15 15 / 15 80 / 50 6 / 6 15 / 30 10 / 10 27 / 27 11 / 11	Comparison ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence Meniscus Grade 1-2 Unilateral Symptoms Mild Varus ACL Reconstruction ACL Reconstruction	Scanner GE GE GE Philips Philips GE GE GE Siemens Siem	Strength 3.0T 3.	$\begin{split} & \text{SMD} \ (95\%\ \text{C1});\ p\\ & 0.08\ (-0.63,\ 0.78);\ 0.833\\ & 0.23\ (-0.61,\ 1.07);\ 0.592\\ & 0.28\ (-0.43,\ 0.98);\ 0.444\\ & 0.10\ (-0.56,\ 0.75);\ 0.77\\ & 1.37\ (0.11,\ 2.62);\ 0.033\\ & 0.08\ (-0.51,\ 0.68);\ 0.783\\ & 0.04\ (-0.55,\ 0.63);\ 0.894\\ & -1.62\ (-2.66,\ -1.19);\ -0.001\\ & -0.09\ (-0.79,\ 0.000);\ 0.795\\ & 0.91\ (0.27,\ 1.54);\ 0.005\\ & -0.09\ (0.77,\ 1.54);\ 0.006\\ \hline & 0.17\ (-0.38,\ 0.72);\ 0.543\\ \hline & 0.17\ (-0.38,\ 0.72);\ 0.543\\ \hline & 2.83\ (1.79,\ 3.86);\ <0.001\\ & 2.91\ (2.24,\ 3.57);\ <0.001\\ & 1.06\ (0.66,\ 1.46);\ <0.010\\ & 1.06\ (0.66,\ 1.46);\ <0.010\\ & 0.45\ (-0.26,\ 1.16);\ 0.218\\ & 0.03\ (-0.69,\ 0.74);\ 0.944\\ & 0.56\ (0.21,\ 0.92;\ 0.002\\ & 1.35\ (0.09,\ 0.04);\ 0.053\\ & 1.16\ (0.49,\ 1.82);\ 0.001\\ & 0.20\ (-0.68,\ 1.08);\ 0.653\\ & 0.15\ (-0.39,\ 0.08);\ 0.653\\ & 0.15\ (-0.39,\ 0.08);\ 0.653\\ & 0.15\ (-0.39,\ 0.08);\ 0.657\\ & 0.11\ (-0.72,\ 0.95);\ 0.77\\ \hline \end{array}$	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19 4.00 5.28 6.18 5.86 5.95 4.77 5.11 5.10 6.30 3.35 5.29 4.52 5.75 4.67	SMD (95% CI)
ATERAL TIBIA 'Irho Relaxation Time olbos et al. (2008) laughom et al. (2012) u et al. (2013) heologis et al. (2014) kwazaki et al. (2015) skaki et al. (2015) skaki et al. (2015) dedia et al. (2017) feiffer et al. (2017) feitferset al. (2017) feitferset al. (2017) tetrosimone et al. (2017) Candom Effects Model (n=486): '2 Relaxation Time ining et al. (2011) auerschnig et al. (2013) au et al. (2011) auerschnig et al. (2013) auerschnig et al. (2013) auerschnig et al. (2013) auerschnig et al. (2013) auerschnig et al. (2015) kwazaki et al. (2015) kwazaki et al. (2015) ika	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 12 / 12 16 / 15 15 / 15 80 / 50 6 / 6 15 / 30 10 / 10 27 / 27 11 / 11 54 / 54	Comparison ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence Meniscus Grade 1-2 Unilateral Symptoms Mild Varus ACL Reconstruction ACL Injury	Scanner GE GE GE Philips GE GE Siemens	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	$\begin{array}{c} SMD \ (95\% \ CD; \ p\\ 0.08 \ (-0.63, 0.78); \ 0.833\\ 0.23 \ (-0.61, 1.07); \ 0.592\\ 0.28 \ (-0.43, 0.98); \ 0.444\\ 0.10 \ (-0.56, 0.67); \ 0.77\\ 1.37 \ (0.11, 2.62); \ 0.033\\ 0.08 \ (-0.51, 0.68); \ 0.783\\ 0.04 \ (-0.55, 0.63); \ 0.894\\ -1.62 \ (-2.66, -1.19); \ 0.701\\ -0.09 \ (-0.79, 0.60); \ 0.795\\ 0.91 \ (0.27, 1.54); \ 0.000\\ -0.09 \ (-0.79, 0.60); \ 0.795\\ 0.91 \ (0.27, 1.54); \ 0.000\\ -0.09 \ (-0.79, 0.60); \ 0.795\\ 0.91 \ (0.27, 1.54); \ 0.000\\ -0.09 \ (-0.79, 0.60); \ 0.795\\ 0.91 \ (0.22, 1.54); \ 0.000\\ -0.17 \ (-0.38, 0.72); \ 0.543\\ \hline 2.83 \ (1.79, 3.86); \ <0.001\\ 2.91 \ (2.24, 3.57); \ <0.001\\ 1.06 \ (0.66, 1.46); \ <0.001\\ 2.91 \ (2.24, 3.57); \ <0.001\\ 1.06 \ (0.66, 1.46); \ <0.001\\ 0.13 \ (0.058, 1.38); \ <0.001\\ 0.43 \ (-0.38, 1.24); \ 0.294\\ 0.45 \ (-0.21, 0.92; \ 0.002\\ 1.35 \ (0.09, 2.60); \ 0.035\\ 1.16 \ (0.49, 0.14); \ 0.94\\ 0.56 \ (0.21, 0.92; \ 0.002\\ 1.35 \ (0.09, 2.60); \ 0.035\\ 1.16 \ (0.54, 1.08); \ 0.653\\ 0.15 \ (-0.39, 0.68); \ 0.573\\ 0.11 \ (-0.72, 0.95); \ 0.793\\ 0.33 \ (-0.56, 7.17); \ 0.086\\ \hline \end{array}$	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.009 9.18 9.40 9.19 9.19 4.00 5.28 6.18 5.86 5.95 4.77 5.11 5.10 6.30 3.35 5.29 4.52 5.75 5.75 4.67 6.24	SMD (95% CI)
Chron Relaxation Time Tho Relaxation Time Tho Relaxation Time Thomoson and the second seco	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 12 / 12 16 / 15 15 / 15 80 / 50 6 / 6 15 / 30 10 / 10 27 / 27 11 / 11 54 / 54 89 / 28	Comparison ACL Injury ACL. Injury ACL. Reconstruction PCL Deficient ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence Meniscus Grade 1-2 Unilateral Symptoms Mild Varus ACL Reconstruction ACL Injury At Risk FOA	Scanner GE GE GE Philips Philips GE GE Siemens	Strength 3.0T 3.	$\begin{array}{c} SMD \ (95\% \ C1); \ p\\ 0.08 \ (-0.63, 0.78); \ 0.833\\ 0.23 \ (-0.61, 1.07); \ 0.592\\ 0.28 \ (-0.43, 0.98); \ 0.444\\ 0.10 \ (-0.56, 0.75); \ 0.771\\ 1.37 \ (0.11, 2.62); \ 0.033\\ 0.08 \ (-0.51, 0.68); \ 0.783\\ 0.04 \ (-0.55, 0.63); \ 0.894\\ -1.62 \ (-2.06, -1.19); \ c.001\\ -0.09 \ (-0.79, 0.60); \ 0.775\\ 0.91 \ (0.27, 1.54); \ 0.005\\ 0.98 \ (0.28, 1.67); \ 0.076\\ 0.17 \ (-0.38, 0.72); \ 0.543\\ \hline 0.17 \ (-0.38, 0.72); \ 0.543\\ \hline 0.17 \ (-0.38, 0.72); \ 0.543\\ \hline 0.16 \ (0.66, 1.46); \ c.0001\\ 2.91 \ (2.24, 3.57); \ c.0001\\ 1.06 \ (0.66, 1.46); \ c.0001\\ 0.19 \ (0.32, 0.69); \ 0.472\\ 1.36 \ (0.08, 1.33); \ c.0001\\ 0.43 \ (-0.38, 1.24); \ 0.204\\ 0.45 \ (-0.26, 1.16); \ c.218\\ 0.03 \ (-0.69, 0.74); \ 0.944\\ 0.45 \ (-0.226, 1.16); \ c.218\\ 0.03 \ (-0.69, 0.74); \ 0.944\\ 0.45 \ (-0.226, 1.16); \ c.218\\ 0.03 \ (-0.69, 0.74); \ 0.944\\ 0.45 \ (-0.226, 1.16); \ c.218\\ 0.03 \ (-0.69, 0.74); \ 0.944\\ 0.45 \ (-0.39, 0.68); \ c.035\\ 1.16 \ (0.49, 1.82); \ 0.001\\ 0.21 \ (-0.39, 0.68); \ c.587\\ 0.11 \ (-0.72, 0.95); \ c.739\\ 0.33 \ (-0.50, 0.71); \ 0.086\\ 0.32 \ (-0.11, 0.75); \ 0.143\\ \hline \end{array}$	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19 4.00 5.28 6.18 5.86 5.95 4.77 5.11 5.10 6.30 3.35 5.29 4.52 5.75 4.67 6.24 6.10	SMD (95% CI)
Cheven and a set of the set of th	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 13 / 12 16 / 15 15 / 15 80 / 50 6 / 6 15 / 30 10 / 10 27 / 27 11 / 11 54 / 54 89 / 28 15 / 15	Comparison ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence Meniscus Grade 1-2 Unilateral Symptoms Mild Varus ACL Reconstruction ACL Injury At risk for OA ACL Reconstruction	Scanner GE GE GE Philips Dialips GE GE Siemens	Strength 3.0T 3.	$\begin{array}{c} SMD \ (95\% \ C1); \ p\\ 0.08 \ (-0.63, 0.78); \ 0.833\\ 0.23 \ (-0.61, 1.07); \ 0.592\\ 0.28 \ (-0.43, 0.98); \ 0.444\\ 0.10 \ (-0.56, 0.75); \ 0.77\\ 1.37 \ (0.11, 2.62); \ 0.033\\ 0.08 \ (-0.51, 0.68); \ 0.783\\ 0.04 \ (-0.55, 0.63); \ 0.894\\ -1.62 \ (-2.66, -1.19); \ -0.001\\ -0.09 \ (-0.79, 0.60); \ 0.795\\ 0.91 \ (0.27, 1.54); \ 0.005\\ 0.98 \ (0.28, 1.67); \ 0.006\\ \textbf{0.17} \ (-0.38, 0.72); \ 0.543\\ \textbf{2.83} \ (1.79, 3.86); \ <0.001\\ 2.91 \ (2.24, 3.57); \ <0.001\\ 1.06 \ (0.66, 1.46); \ <0.001\\ 2.91 \ (2.24, 3.57); \ <0.001\\ 1.06 \ (0.66, 1.46); \ <0.001\\ 0.19 \ (0.32, 1.67); \ 0.002\\ 1.36 \ (0.068, 1.83); \ <0.001\\ 0.03 \ (-0.69, 1.66); \ <0.001\\ 0.03 \ (-0.69, 1.66); \ <0.001\\ 0.35 \ (-0.26, 1.09); \ <0.002\\ 1.35 \ (0.09, 0.40); \ 0.032\\ 1.16 \ (0.049, 1.82); \ 0.002\\ 1.35 \ (0.09, 0.002)\\ 1.16 \ (0.72, 0.95); \ 0.793\\ 0.33 \ (0.05, 0.71); \ 0.086\\ 0.32 \ (-0.21, 0.72); \ 0.143\\ 0.43 \ (-0.29, 1.16); \ 0.243\\ \end{array}$	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19 4.00 5.28 6.18 5.86 5.95 4.77 5.11 5.10 6.30 3.35 5.29 4.52 5.75 4.67 6.24 6.10 5.07	SMD (95% CI)
ATERAL TIBIA Inho Relaxation Time olibos et al. (2008) aughom et al. (2012) ret al. (2013) heologis et al. (2014) kazaki et al. (2015) saki et al. (2015) saki et al. (2015) saki et al. (2016) ret al. (2016) ret al. (2016) cel al. (2017) Territorismone et al. (2017) andom Effects Model (n=486): 2 Relaxation Time 2 Relaxation Time territorismone et al. (2017) and consection of the second i et al. (2011) ai et al. (2011) ai et al. (2011) auresching et al. (2013) ret al. (2013) an Ginckel et al. (2013) ret al. (2015) kazaki et al. (2015) kazaki et al. (2015) kazaki et al. (2015) heno et al. (2016) ameri-Smith et al. (2016) ameri-Smith et al. (2016) ifrint et al. (2016) ret al. (2016) ogan et al. (2018) so et al. (2018)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 12 / 12 16 / 15 15 / 15 80 / 50 6 / 6 15 / 30 10 / 10 27 / 27 11 / 11 54 / 54 89 / 28 15 / 15 23 / 23	Comparison ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence Meniscus Grade 1-2 Unilateral Symptoms Mild Varus ACL Reconstruction ACL Injury At risk for OA ACL Reprint Participation ACL Injury ACL Reprint Participation ACL Reconstruction ACL Injury ACL Reprint Participation ACL Reconstruction ACL Injury ACL Reprint Participation ACL Reconstruction ACL Injury	Scanner GE GE GE Philips DE GE GE Siemens Siem	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	$\begin{array}{c} SMD \ (95\% \ CD; \ p\\ 0.08 \ (-0.63, 0.78); \ 0.833\\ 0.23 \ (-0.61, 1.07); \ 0.592\\ 0.28 \ (-0.43, 0.98); \ 0.444\\ 0.10 \ (-0.56, 0.67); \ 0.77\\ 1.37 \ (0.11, 2.62); \ 0.033\\ 0.08 \ (-0.51, 0.68); \ 0.783\\ 0.04 \ (-0.55, 0.63); \ 0.894\\ -1.62 \ (-2.66, -1.19); \ 0.701\\ -0.09 \ (-0.79, 0.60); \ 0.795\\ 0.91 \ (0.27, 1.54); \ 0.001\\ -0.09 \ (-0.79, 0.60); \ 0.795\\ 0.91 \ (0.27, 1.54); \ 0.001\\ -0.09 \ (-0.79, 0.60); \ 0.795\\ 0.91 \ (0.27, 1.54); \ 0.001\\ -0.09 \ (-0.79, 0.60); \ 0.795\\ 0.91 \ (0.28, 1.67); \ 0.001\\ 2.91 \ (2.24, 3.57); \ <0.001\\ 1.06 \ (0.66, 1.46); \ <0.001\\ 2.91 \ (2.24, 3.57); \ <0.001\\ 1.06 \ (0.66, 1.46); \ <0.001\\ 0.13 \ (0.08, 1.33); \ <0.001\\ 0.43 \ (-0.38, 1.24); \ 0.294\\ 0.45 \ (-0.26, 1.16); \ 0.218\\ 0.03 \ (-0.69, 0.74); \ 0.944\\ 0.56 \ (0.21, 0.92; \ 0.002\\ 1.35 \ (0.09, 2.60); \ 0.035\\ 1.16 \ (0.49, 1.82); \ 0.001\\ 0.20 \ (-0.68, 1.08); \ 0.653\\ 0.15 \ (-0.39, 0.088); \ 0.587\\ 0.11 \ (-0.72, 0.95); \ 0.793\\ 0.33 \ (-0.08, 0.71); \ 0.086\\ 0.43 \ (-0.29, 1.16); \ 0.243\\ 0.99 \ (0.38, 1.60); \ 0.002\\ \end{array}$	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.009 9.18 9.40 9.19 9.19 4.00 5.28 6.18 5.86 5.95 4.77 5.11 5.10 6.30 3.35 5.29 4.52 5.75 5.48	SMD (95% CI)
ATERAL TIBIA Irho Relaxation Time olbos et al. (2008) aughom et al. (2012) or et al. (2013) heologis et al. (2014) kazaki et al. (2015) saki et al. (2015) saki et al. (2015) saki et al. (2015) saki et al. (2016) ard al. (2017) feiffer et al. (2017) leiffer et al. (2017) andom Effects Model (n=486): 2 Relaxation Time ining et al. (2008) u et al. (2011) aut et al. (2011) aut et al. (2011) aut et al. (2011) aut et al. (2013) at et al. (2013) at et al. (2015) kazaki et al. (2015) heno et al. (2016) umieri-Smith et al. (2016) irth et al. (2016) ogan et al. (2018) 'ang et al. (2018)	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 12 / 12 16 / 15 15 / 15 80 / 50 6 / 6 15 / 30 10 / 10 27 / 27 11 / 11 54 / 54 89 / 28 15 / 15 23 / 23 9 / 28	Comparison ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Injury AT risk for OA	Scanner GE GE GE Philips GE GE Siemens	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	$\begin{array}{c} SMD \ (95\% \ CD; \ p\\ 0.08 \ (-0.63, 0.78); 0.833\\ 0.23 \ (-0.61, 1.07); 0.592\\ 0.28 \ (-0.43, 0.98); 0.444\\ 0.10 \ (-0.55, 0.03); 0.034\\ 0.10 \ (-0.55, 0.03); 0.034\\ 0.10 \ (-0.55, 0.03); 0.894\\ -1.62 \ (-2.06, -1.19); 0.010\\ -0.09 \ (-0.79, 0.60); 0.795\\ 0.91 \ (0.27, 1.54); 0.006\\ 0.17 \ (-0.38, 0.72); 0.543\\ \hline 0.17 \ (-0.38, 0.72); 0.543\\ \hline 2.83 \ (1.79, 3.86); <0.001\\ 2.91 \ (2.24, 3.57); <0.001\\ 1.06 \ (0.66, 1.46); <0.001\\ 0.17 \ (-0.38, 0.72); 0.543\\ \hline 2.83 \ (0.52, 0.63); <0.001\\ 1.06 \ (0.66, 1.46); <0.001\\ 0.13 \ (-0.54, 0.35); <0.001\\ 1.06 \ (0.66, 1.43); <0.001\\ 0.13 \ (0.03, 2, 0.69); 0.472\\ 1.36 \ (0.68, 1.83); <0.001\\ 0.43 \ (-0.32, 0.69); 0.472\\ 1.36 \ (0.68, 1.83); <0.001\\ 0.43 \ (-0.32, 0.69); 0.472\\ 1.36 \ (0.068, 1.08); 0.053\\ 1.16 \ (0.49, 1.62); 0.002\\ 1.35 \ (0.05, 0.71); 0.036\\ 0.32 \ (-0.35, 0.71); 0.086\\ 0.32 \ (-0.11, 0.75); 0.143\\ 0.43 \ (-0.29, 1.16); 0.243\\ 0.99 \ (0.38, 1.60); 0.002\\ -0.10 \ (-0.85, 0.65); 0.797\\ \hline \end{array}$	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.09 9.18 9.40 9.19 4.00 5.28 6.18 5.86 5.95 4.77 5.11 5.10 6.30 3.35 5.29 4.57 5.11 5.10 6.30 3.35 5.29 4.57 5.45 4.57 5.45 4.57 5.45 4.57 5.48 4.97	SMD (95% CI)
b Chrob Relaxation Time Solbos et al. (2008) 4aughom et al. (2012) is et al. (2013) Theologis et al. (2014) %azaki et al. (2015) %azaki et al. (2015) bedoia et al. (2016) et al. (2016) Vedoia et al. (2017) feifer et al. (2017) feifersent et al. (2017) tertos impose et al. (2018) auerschnig et al. (2013) at al. (2011) tai et al. (2015) taraki et al. (2015) taraki et al. (2015) taraki et al. (2015) taraki et al. (2015) tare et al. (2015) u et al. (2016) trimeiri-Finith et	Healthy / At Risk 15 / 16 11 / 11 16 / 15 18 / 18 6 / 6 14 / 49 15 / 40 54 / 54 10 / 40 21 / 21 18 / 18 z=-0.61; Test for Heter 60 / 5 30 / 42 33 / 128 143 / 17 42 / 42 12 / 12 16 / 15 15 / 15 80 / 50 6 / 6 15 / 30 10 / 10 27 / 27 11 / 11 54 / 54 89 / 28 15 / 15 23 / 23 9 / 28); z=4.55; Test for Heter	Comparison ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction PCL Deficient ACL Injury ACL Injury ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction Chondral Damage Cartilage Injury OAI Incidence Meniscus Grade 1-2 Unilateral Symptoms Mild Varus ACL Reconstruction ACL Injury ACL Injury ACL Injury ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Reconstruction ACL Injury ACL Reconstruction SCL Injury ACL Reconstruction	Scanner GE GE GE Philips DE GE GE Siemens Siem	Strength 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T 3.0T	SMD (95% CI); p 0.08 (-0.63, 0.78); 0.833 0.23 (-0.61, 1.07); 0.592 0.28 (-0.43, 0.98); 0.444 0.10 (-0.56, 0.67); 0.77 1.37 (0.11, 2.62); 0.033 0.04 (-0.51, 0.68); 0.783 0.04 (-0.51, 0.68); 0.783 0.04 (-0.51, 0.68); 0.783 0.04 (-0.51, 0.68); 0.783 0.04 (-0.79, 0.60); 0.795 0.91 (0.27, 1.54); 0.006 0.98 (0.28, 1.67); 0.006 0.17 (-0.38, 0.72); 0.543 2.83 (1.79, 3.86); <0.001 2.91 (2.24, 3.57); <0.001 1.06 (0.66, 1.40); <0.001 2.91 (2.24, 3.57); <0.001 1.06 (0.66, 1.46); <0.001 0.13 (0.032, 0.69); 0.472 1.36 (0.68, 1.38); <0.001 0.43 (-0.38, 1.24); 0.294 0.45 (-0.26, 1.16); 0.218 0.03 (-0.69, 0.74); 0.944 0.56 (0.21, 0.92; 0.002 1.35 (0.09, 2.60); 0.035 1.16 (0.49, 0.14); 0.944 0.56 (0.24, 1.16); 0.218 0.33 (-0.50, 0.71); 0.086 0.32 (-0.11, 0.75); 0.143 0.43 (-0.29, 1.16); 0.243 0.99 (0.38, 1.60); 0.002 -0.10 (-0.85, 0.65); 0.797 0.74 (0.42, 1.07); <0.001	% Weight 9.13 8.59 9.12 9.33 6.86 9.55 9.56 10.009 9.18 9.40 9.19 4.00 5.28 6.18 5.86 5.95 4.77 5.11 5.10 6.30 3.35 5.29 4.52 5.75 5.467 6.24 6.10 5.07 5.48 4.97	SMD (95% CI)

(See figure on previous page.)

Fig. 3 a Forest plots illustrating individual and pooled SMD for differences in T1rho and T2 relaxation time of lateral femoral articular cartilage between healthy controls and participants at risk for knee OA. SMD = standardized mean difference, 95% CI = 95% confidence interval, ACL = anterior cruciate ligament, PCL = posterior cruciate ligament, ICRS=International Cartilage Repair Society, OAI=Osteoarthritis Initiative, OA = osteoarthritis, GE = General Electric, T = Tesla. **b** Forest plots illustrating individual and pooled SMD for differences in T1rho and T2 relaxation time of lateral tibial articular cartilage between healthy controls and participants at risk for knee OA. SMD = standardized mean difference, 95% CI = 95% confidence interval, ACL = anterior cruciate ligament, PCL = posterior cruciate ligament, ICRS=International Cartilage Repair Society, OAI=Osteoarthritis Initiative, OA = osteoarthritis, GE = General Electric, T = Tesla

· · · · · · · · · · · · · · · · · · ·							
2							
a							
PATELLA							
	Healthy / At Risk	Comparison	Scanner	Strength	SMD (95% CI); p	% Weight	HEALTHY AT RISK FOR KNEE OA
T1rho Relaxation Time							
Haughom et al. (2012)	11/11	ACL Injury	GE	3.0T	-0.06 (-0.90, 0.77); 0.883	4.94	
Su et al. (2013)	16/15	ACL Reconstruction	GE	3.0T	0.35 (-0.36, 1.06); 0.340	6.86	
Thuiller et al. (2013)	10/20	Patellofemoral Pain	GE	3.0T	0.48 (-0.29, 1.25); 0.219	5.85	
Theologis et al. (2014)	18/18	ACL Reconstruction	GE	3.0T	-0.17 (-0.83, 0.48); 0.610	8.07	
Lau et al. (2016)	6 / 10	Patellofemoral Pain	GE	3.0T	0.52 (-0.51, 1.55); 0.322	3.27	
Pedoia et al. (2016)	15/40	ACL Injury	GE	3.0T	-0.31 (-0.91, 0.29); 0.306	9.72	
Su et al. (2016)	54 / 54	ACL Injury	GE	3.0T	-0.12 (-0.49, 0.26); 0.548	24.24	
Van der Heijden et al. (2016)	70 / 64	Patellofemoral Pain	GE	3.0T	0.22 (-0.12, 0.55); 0.210	29.89	+=-
Pedoia et al. (2017)	10/40	ACL Injury	GE	3.0T	-0.25 (-0.95, 0.44); 0.477	7.16	
Random Effects Model (n=482):	z=0.43; Test for Heter	ogeneity: I ² =0.0%, p=0.538			0.04 (-0.15, 0.23); 0.669		•
T2 Relaxation Time							
Xu et al. (2011)	30/42	Cartilage Injury	Philips	3.0T	3.07 (2.38, 3.75); <0.001	4.43	
Hovis et al. (2011)	33 / 128	OAI Incidence	Siemens	3.0T	0.52 (0.13, 0.91); 0.009	5.73	;
Farrokhi et al. (2011)	10/10	Patellofemoral Pain	GE	3.0T	0.39 (-0.50, 1.28); 0.387	3.63	
Apprich et al. (2012)	11/10	ICRS Grade 1	Siemens	3.0T	0.50 (-0.37, 1.37); 0.257	3.69	
Baum et al. (2012)	42/42	Unilateral Symptoms	Siemens	3.0T	-0.33 (-0.76, 0.10); 0.131	5.55	
Baum et al. (2013)	41 / 101	OAI Incidence	Siemens	3.0T	0.00 (-0.36, 0.36); 1.000	5.83	
Sauerschnig et al. (2013)	12/12	Mild Varus	Siemens	1.5T	0.53 (-0.28, 1.35); 0.199	3.90	
Su et al. (2013)	16/15	ACL Reconstruction	GE	3.0T	0.26 (-0.45, 0.96); 0.481	4.34	
Thuiller et al. (2013)	10/20	Patellofemoral Pain	GE	3.0T	-0.05 (-0.81, 0.71); 0.896	4.12	
Subhawong et al. (2014)	28 / 22	Patellofemoral Pain	Siemens	3.0T	0.34 (-0.23, 0.90); 0.242	4.97	
Bengtsson-Mostrom et al. (2015)	16/16	Patella Dislocation	Philips	1.5T	-0.13 (-0.82, 0.56); 0.713	4.40	
Liebl et al. (2015)	80 / 50	OAI Incidence	Siemens	3.0T	0.45 (0.09, 0.81); 0.014	5.85	
H Li et al. (2015)	15/30	ACL Reconstruction	Siemens	3.0T	0.50 (-0.13, 1.13); 0.121	4.68	+ -
Van der Heijden et al. (2016)	70 / 64	Patellofemoral Pain	GE	3.0T	0.12 (-0.22, 0.45); 0.506	5.92	÷
Kang et al. (2016)	53 / 53	Patellofemoral Pain	GE	1.5T	0.65 (0.26, 1.04); 0.001	5.72	
Su et al. (2016)	54 / 54	ACL Injury	GE	3.0T	0.04 (-0.34, 0.41); 0.853	5.77	
Mostrom et al. (2018)	17/17	Patella Stabilization	Philips	1.5T	0.25 (-0.42, 0.93); 0.463	4.48	_
Kim et al. (2018)	10/10	ACL Reconstruction	Siemens	3.0T	-0.04 (-0.91, 0.84); 0.936	3.66	
Kogan et al. (2018)	15/15	ACL Reconstruction	GE	3.0T	0.07 (-0.64, 0.79); 0.841	4.30	
Tao et al. (2018)	23/23	SCL Injury	Siemens	3.0T	0.31 (-0.27, 0.89); 0.294	4.89	
Wang et al. (2018)	9/28	ACL Reconstruction	Siemens	3.0T	-0.32 (-1.07, 0.44); 0.410	4.14	
Random Effects Model (n=1,357)): z=2.60; Test for Hete	erogeneity: I ² =77.3%, p<0.00)1		0.33 (0.08, 0.58); 0.009		•
							-2 -1 0 1 2 3 4
							SMD (95% CI)
h							(1.1.2.)
D							
TROCHLEA							
	Healthy / At Risk	Comparison	Scanner	Strength	SMD (95% CI): p	% Weight	HEALTHY AT RISK FOR KNEE OA
T1rho Relaxation Time		companion		5.1018.11	5.112 (70 % 61), P	in in engine	HEALINI AT KISK TOK KILLE OA
Lau et al. (2016)	6/10	Patellofemoral Pain	GE	3.0T	-0.13 (-1.15, 0.88): 0.796	7.56	
Pedoja et al. (2016)	15/40	ACL Injury	GE	3.0T	0.22 (-0.37, 0.82); 0.464	21.94	
Sulet al. (2016)	54/54	ACL Injury	GE	3.0T	0.18 (-0.19, 0.56); 0.337	54.34	- L
Pedoja et al. (2017)	10/40	ACL Injury	GE	3.0T	0.14 (-0.56, 0.83); 0.697	16.15	
redola et da (2017)	107 40	ACD injury	0L	5.01	0.14 (-0.50, 0.05), 0.077	10.15	
Random Effects Model (n=229):	z=1.14: Test for Heter	ogeneity: 1 ² =0.0%, p=0.943			0.16 (-0.12, 0.44); 0.756		
T2 Relaxation Time							
Sauerschnig et al. (2013)	12/12	Mild Vorus	Siamans	1.5T	0.67 (-0.16, 1.49): 0.112	10.12	
H Li et al. (2015)	12/12	ACL Reconstruction	Siemens	2.0T	0.05 (0.30, 1.49); 0.004	14.22	
Su et el (2016)	137 30	ACL Reconstruction	Sichichs	3.01	0.65 (0.28, 1.05); 0.004	14.55	-
Kim et al. (2018)	34/34	ACL injury	Siamans	3.01 3.0T	0.13 (.0.75, 1.00); 0.770	25.94	
Kogan et al. (2018)	10/10	ACL Reconstruction	Siemens	3.01	0.15 (-0.75, 1.00); 0.779	9.13	
Tao at al. (2018)	15/15	ACL Reconstruction	GE	3.01	0.34 (-0.38, 1.00); 0.354	12.30	
1 ao et al. (2018)	23/23	SCL Injury	Siemens	3.01	0.38 (-0.21, 0.96); 0.205	10.58	
wang et al. (2018)	9/28	ACL Reconstruction	Siemens	5.01	-0.30 (-1.12, 0.40); 0.349	11.53	
Dandam Effasts Model (~ 210)		agonalitar 12-21 200 m 0 100			0.73 (0.42, 1.04); -0.001		
Random Effects Model (n=310):	z=2.99; Test for Heter	ogeneny: 1-=51.5%, p=0.189			0.75 (0.42, 1.04); <0.001		-
							-2 -1 0 1 2 3 4
							SMD (05% CD)

Fig. 4 a Forest plots illustrating individual and pooled SMD for differences in T1rho and T2 relaxation time of patellar articular cartilage between healthy controls and participants at risk for knee OA. SMD = standardized mean difference, 95% CI = 95% confidence interval, ACL = anterior cruciate ligament, ICRS=International Cartilage Repair Society, OAI=Osteoarthritis Initiative, OA = osteoarthritis, GE = General Electric, T = Tesla. **b** Forest plots illustrating individual and pooled SMD for differences in T1rho and T2 relaxation time of trochlear articular cartilage between healthy controls and participants at risk for knee OA. SMD = standardized mean difference, 95% CI = 95% confidence interval, ACL = anterior cruciate participants at risk for knee OA. SMD = standardized mean difference, 95% CI = 95% confidence interval, ACL = anterior cruciate ligament, ICRS=International Cartilage Repair Society, OAI=Osteoarthritis Initiative, OA = osteoarthritis, GE = General Electric, T = Tesla

in articular cartilage are significantly prolonged in knees at risk for developing OA, especially in the more commonly affected compartments. T2 relaxation time was significantly prolonged in participants at risk for knee OA in all analyzed compartments with effect sizes ranging from small-to-moderate (SMD = 0.33-0.74; p < 0.001), suggesting T2 is sensitive to early changes in collagen orientation and structural integrity [120], as well as water content in these at-risk participants [13, 15, 16]. These findings add support to the use of T2 relaxation time for early detection of OA, before substantial radiographic changes are evident, and support further efforts towards compositional MRI biomarker validation and qualification.

Interestingly, effect sizes for T1 ρ relaxation time were small, and lower for each analyzed compartment in comparison to effect sizes for T2 relaxation time, (SMD = 0.04–0.40; p = 0.001-0.76), and only the MF and LF compartments demonstrated significantly prolonged T1 ρ relaxation time compared to healthy controls (SMD = 0.35–0.40; p < 0.001). However, there were fewer studies that included T1 ρ as an outcome measure with generally smaller sample sizes. More research comparing T2 and T1 ρ relaxation times for participants at various stages of knee OA is required.

In all knee compartments, there was significant heterogeneity associated with the overall pooled effect sizes for T2 relaxation time (Figs. 2, 3, and 4). Sensitivity analysis suggested that the high effect sizes of the cartilage injury subgroups are responsible for this heterogeneity (SMD = 1.29–2.88; p = 0.001–0.38), and after removal from the analyses, heterogeneity was no longer significant in the MF and P compartments ($I^2 = 19-23\%$; p >0.2) but remained moderate in the MT and LF compartments ($I^2 = 66-70$, p > 0.01). There were no articles assessing T1p relaxation time of participants with cartilage injury, which may explain the lack of heterogeneity in the T1p meta-analyses. The large effect sizes observed in these studies including patients with cartilage injury may be due to the different mechanopathology as a result of focal defects [18] in comparison to other participants in this systematic review. Alternatively, we must acknowledge the substantial difference in age between this at-risk subgroup and controls. Publication bias was also significant in three compartments for T1p relaxation time, which may be due to the relative novelty of such measures in comparison to T2 relaxation time. There was no publication bias observed in any meta-analyses assessing T2 relaxation time.

Conclusions

Based on these results, T2 and T1p relaxometry of articular cartilage show substantial promise in their ability to identity pathological cartilage in participants at risk for knee OA. The present results are consistent with cross-sectional studies reporting known risk factors, such as increased age [89], body mass [42], and knee malalignment [111], and their association with significantly prolonged articular cartilage T2 relaxation times. The present study also highlights the wide variety of methods currently used to collect, process, and analyze T2 and T1 ρ mapping. Overall, the present results emphasize both the potential, as well as the need for greater standardization of methods across sites for T2 and T1 ρ data collection and processing procedures to make greater gains toward potential biomarker validation.

Additional file

Additional file 1: Appendix 1 Search Strategy List of terms used to search the databases for eligible studies in the systematic review and meta-analyses. Appendix 2 Title of Data: Risk of Bias in Non-randomized Studies - of Interventions (ROBINS-I) Summary of the quality assessment for all studies using the ROBINS-I tool, grading studies on seven domains (confounding, participant selection bias, intervention bias, deviation from intervention, missing data, outcome measurement bias, outcome reporting bias) and their associated risk of bias (low, moderate, or severe). Appendix 3 Summary of Sensitivity Analyses Results of sensitivity analyses to account for potential bias of duplicate inclusions of participants as part of the Osteoarthritis Initiative, as well as potential for bias of studies using within-subject designs (healthy knee versus at-risk knee within the same participant). Appendix 4 Summary of Subgroup Analyses Results of subgroup analyses to investigate potential differences in effect sizes for groups with specific risk factors (anterior cruciate ligament injury, risk for patellofemoral osteoarthritis, and articular cartilage injuries Appendix 5 Preferred Reporting of Items in Systematic Reviews and Meta-Analyses (PRISMA) Checklist PRISMA table identifying where in the text all required aspects of the checklist can be found in the manuscript. (DOCX 40 kb)

Abbreviations

95% CI: 95% confidence interval; ACL: Anterior cruciate ligament; CINAHL: Cumulative Index to Nursing & Allied Health Literature; CV: Coefficient of variation; dGEMRIC: Delayed gadolinium enhanced magnetic resonance imaging of cartilage; gagCEST: Glycosaminoglycan chemical exchange saturation transfer; ICC: Intra-class correlation coefficient; ICRS: International Cartilage Repair Society; KL: Kellgren & Lawrence; LF: Lateral femur; LT: Lateral tibia; MF: Medial femur; MRI: Magnetic resonance imaging; MT: Medial tibia; OA: Osteoarthritis; OAI: Osteoarthritis Initiative; P: Patella; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; ROBINS-I: Risk of Bias in Non-randomized Studies - of Interventions; ROI: Region of interest; SD: Standard deviation; SMD: Standardized mean difference; TrF: Trochlea of femur

Acknowledgements

Not applicable

Funding

This study was supported in part by the Canada Research Chairs Program (Birmingham), the Canadian Institutes of Health Research, the Arthritis Society of Canada, and the University of Western Ontario Bone & Joint Institute (Atkinson, Moyer, and Yacoub). The funding bodies had no role in the design, analysis, interpretation of data, or writing of the manuscript.

Availability of data and materials

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions

Conception and design: HFA, TBB, RFM, RTT, JDT. Collection and assembly of data: HFA, RFM, DY. Analysis and interpretation of the data: HFA, TBB, RFM,

LEK, DMB. Drafting and approval of the article: HFA, TBB, RFM, DY, LEK, RTT, JDT, DMB. All authors have read and approved the final version of the manuscript.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

¹School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada. ²Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada. ³Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada. ⁴School of Physiotherapy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada. ⁵Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada. ⁶Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada. ⁷Imaging Program, Lawson Health Research Institute, London, Ontario, Canada. ⁸Musculoskeletal Rehabilitation, Elborn College, University of Western Ontario, London, Ontario N6G 1H1, Canada.

Received: 7 January 2019 Accepted: 28 March 2019 Published online: 01 May 2019

References

- Eckstein F, Cicuttini F, Raynauld J-P, Waterton JC, Peterfy C. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthr Cartil. 2006;14:46–75. https://doi.org/ 10.1016/JJOCA.2006.02.026.
- Amin S, LaValley M, Guermazi A, et al. The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis. Arthritis Rheum. 2005;52(10):3152–9. https://doi.org/10.1002/art.21296.
- Conaghan PG, Felson D, Gold G, Lohmander S, Totterman S, Altman R. MRI and non-cartilaginous structures in knee osteoarthritis. Osteoarthr Cartil. 2006;14:87–94. https://doi.org/10.1016/J.JOCA.2006.02.028.
- Roemer FW, Guermazi A, Felson DT, et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis. 2011. http://dx.doi.org/10.1136/ard.2011.150243. Accessed 10 Sept 2018.
- Felson DT. Imaging abnormalities that correlate with joint pain. Br J Sports Med. 2011;45(4):289–91. https://doi.org/10.1136/bjsm.2010.081398.
- Terzidis IP, Christodoulou AG, Ploumis AL, Metsovitis SR, Koimtzis M, Givissis P. The appearance of kissing contusion in the acutely injured knee in the athletes. Br J Sports Med. 2004;38(5):592–6. https://doi.org/10.1136/bjsm. 2003.006718.
- Nieminen MT, Rieppo J, Töyräs J, et al. T₂ relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med. 2001;46(3):487–93. https://doi.org/10.1002/mrm.1218.
- Keenan KE, Besier TF, Pauly JM, et al. Prediction of glycosaminoglycan content in human cartilage by age, T1p and T2 MRI. Osteoarthr Cartil. 2011;19(2):171–9. https://doi.org/10.1016/JJOCA.2010.11.009.
- Duvvuri U, Kudchodkar S, Reddy R, Leigh JS. T1p relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. Osteoarthr Cartil. 2002;10(11):838–44. https://doi.org/10.1053/JOCA.2002.0826.
- van Tiel J, Kotek G, Reijman M, et al. Is T1p mapping an alternative to delayed gadolinium-enhanced MR imaging of cartilage in the assessment of Sulphated glycosaminoglycan content in human osteoarthritic knees? An in Vivo Validation Study. Radiology. 2016;279(2):523–31. https://doi.org/10. 1148/radiol.2015150693.

- Mlynárik V, Trattnig S, Huber M, Zembsch A, Imhof H. The role of relaxation times in monitoring proteoglycan depletion in articular cartilage. J Magn Reson Imaging. 1999;10(4):497–502. https://doi.org/10.1002/(SICI)1522-2586(199910)10:4<497::AID-JMRI1>3.0.CO;2-T.
- Mlynárik V, Szomolányi P, Toffanin R, Vittur F, Trattnig S. Transverse relaxation mechanisms in articular cartilage. J Magn Reson. 2004;169(2):300–7. https://doi. org/10.1016/JJMR.2004.05.003.
- Menezes N, Gray ML, Hartke JR, Deborah B. T2 and T1p MRI in articular cartilage systems. Magn Reson Med. 2004;51(3):503–9. https://doi.org/10. 1002/mrm.10710.
- Taylor C, Carballido-Gamio J, Majumdar S, Li X. Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1ρ, dGEMRIC and contrastenhanced computed tomography. Magn Reson Imaging. 2009;27(6):779–84. https://doi.org/10.1016/J.MRI.2009.01.016.
- Liebl H, Joseph G, Nevitt MC, et al. Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Ann Rheum Dis. 2015;74(7):1353–LP-1359. http://dx.doi.org/10.1136/ annrheumdis-2013-204157.
- Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. In: Seminars in Musculoskeletal Radiology, vol. 8; 2004. p. 355–68.
- Link TM, Li X. Establishing compositional MRI of cartilage as a biomarker for clinical practice. Osteoarthr Cartil. 2018;26(9):1137–9. https://doi.org/10.1016/ JJOCA.2018.02.902.
- Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthr Cartil. 2013; 21(10):1474–84. https://doi.org/10.1016/JJOCA.2013.07.012.
- Prasad AP, Nardo L, Schooler J, Joseph GB, Link TM. T1p and T2 relaxation times predict progression of knee osteoarthritis. Osteoarthr Cartil. 2013;21(1): 69–76. https://doi.org/10.1016/JJOCA.2012.09.011.
- 20. Li X, Kuo D, Theologis A, et al. Cartilage in anterior cruciate ligament–reconstructed knees: MR imaging T1 $_{
 m \rho}$ and T2—initial experience with 1-year follow-up. Radiology. 2011;258(2):505–14. https://doi.org/10.1148/radiol.10101006.
- Su F, Pedoia V, Teng H-L, et al. The association between MR T1p and T2 of cartilage and patient-reported outcomes after ACL injury and reconstruction. Osteoarthr Cartil. 2016;24(7):1180–9. https://doi.org/10.1016/j.joca.2016.01.985.
- Klocke NF, Amendola A, Thedens DR, Williams GN, Luty CM, Martin JA & Pedersen DR. Comparison of T1ρ , dGEMRIC, and quantitative T2 MRI in preoperative ACL rupture patients. Academic radiology. 2013;20(1):99–107. https://doi.org/10.1016/j.acra.2012.07.009.
- Kai B, Mann SA, King C, Forster BB. Integrity of articular cartilage on T2 mapping associated with meniscal signal change. Eur J Radiol. 2011;79(3): 421–7. https://doi.org/10.1016/J.EJRAD.2010.06.011.
- Matsubara H, Okazaki K, Takayama Y, et al. Detection of early cartilage deterioration associated with meniscal tear using T1p mapping magnetic resonance imaging. BMC Musculoskelet Disord. 2015;16(1):22. https://doi. org/10.1186/s12891-015-0487-4.
- Jungmann PM, Kraus MS, Alizai H, et al. Association of Metabolic Risk Factors with Cartilage Degradation Assessed by T2 relaxation time at the knee: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken). 2013;65(12):1942–50. https://doi.org/10.1002/acr.22093.
- Serebrakian AT, Poulos T, Liebl H, et al. Weight loss over 48 months is associated with reduced progression of cartilage T2 relaxation time values: data from the osteoarthritis initiative. J Magn Reson Imaging. 2015;41(5): 1272–80. https://doi.org/10.1002/jmri.24630.
- MacKay JW, Low SBL, Smith TO, Toms AP, McCaskie AW, Gilbert FJ. Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthr Cartil. 2018. https://doi.org/10.1016/JJOCA.2017.11.018.
- Atkinson HF, Birmingham T, Moyer R, Kanko L, Yacoub D, Giffin J. T1rho and T2 relaxation of knee articular cartilage in patients with and at risk for knee osteoarthritis: a systematic review and meta-analysis. Osteoarthr Cartil. 2017; 25:S236–7. https://doi.org/10.1016/j.joca.2017.02.403.
- Bauer DC, Hunter DJ, Abramson SB, et al. Review classification of osteoarthritis biomarkers: a proposed approach. Osteoarthr Cartil. 2006;14(8):723–7. https:// doi.org/10.1016/j.joca.2006.04.001.
- European Society of Radiology (ESR) ES of R. White paper on imaging biomarkers. Insights Imaging. 2010;1(2):42–5. https://doi.org/10.1007/ s13244-010-0025-8.

- Abramson RG, Burton KR, J-PJ Y, et al. Methods and challenges in quantitative imaging biomarker development. Acad Radiol. 2015;22(1):25–32. https://doi. org/10.1016/j.acra.2014.09.001.
- Group F-NBW. BEST (Biomarkers, EndpointS, and Other Tools) Resource. Food and Drug Administration (US); 2016. https://www.ncbi.nlm.nih.gov/ books/NBK326791/. Accessed 28 Aug 2018.
- Hunter DJ, Nevitt M, Losina E, Kraus V. Biomarkers for osteoarthritis: current position and steps towards further validation. Best Pract Res Clin Rheumatol. 2014;28(1):61–71. https://doi.org/10.1016/j.berh.2014.01.007.
- Roemer FW, Kijowski R, Guermazi A. Editorial: from theory to practice the challenges of compositional MRI in osteoarthritis research. Osteoarthr Cartil. 2017;25(12):1923–5. https://doi.org/10.1016/J.JOCA.2017.08.007.
- Moher D, Liberati A, Tetzlaff J, Altman DG, Group TP. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed. 1000097.
- Nevitt MC, Felson DT, Lester G. OAI protocol the osteoarthritis initiative protocol for the cohort study. Osteoarthr Initiat. 2006:1–74 https://oai.epiucsf.org/datarelease/docs/StudyDesignProtocol.pdf. Accessed 18, July 2018.
- Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502. http://dx.doi.org/10.1136/ard.16.4.494 . Accessed 17 Dec 2018.
- Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. https://doi.org/10.1136/BMJ.I4919.
- Cohen J. Statistical power analysis for the behavioral sciences second edition. https://doi.org/10.1016/C2013-0-10517-X .
- Rothstein HR, Sutton AJ, Borenstein M. Publication Bias in Meta-analysis. 2005. https://doi.org/10.1002/0470870168.index .
- Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication Bias in meta-analysis. Biometrics. 2000; 56(2):455–63. https://doi.org/10.1111/j.0006-341X.2000.00455.x.
- Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. https://doi.org/10.1136/bmj. 327.7414.557.
- van den Borne MPJ, Raijmakers NJH, Vanlauwe J, et al. International cartilage repair society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in autologous chondrocyte implantation (ACI) and microfracture. Osteoarthr Cartil. 2007;15(12):1397–402. https://doi.org/10. 1016/J.JOCA.2007.05.005.
- Outerbridge RE. Etiology of chondromalacia patellae. J bone Jt Surg. 1961; 43(4):752–7. https://doi.org/10.1302/0301-620X.43B4.752.
- Baum T, Joseph GB, Arulanandan A, et al. Association of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with knee pain: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken). 2012;64(2):248–55. https://doi.org/10.1002/acr.20672.
- Baum T, Joseph GB, Nardo L, et al. Correlation of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with body mass index: thirty-six-month followup data from a longitudinal, observational multicenter study. Arthritis Care Res (Hoboken). 2013;65(1): 23–33. https://doi.org/10.1002/acr.21741.
- Baum T, Stehling C, Joseph GB, et al. Changes in knee cartilage T2 values over 24 months in subjects with and without risk factors for knee osteoarthritis and their association with focal knee lesions at baseline: data from the osteoarthritis initiative. J Magn Reson Imaging. 2012; 35(2):370–8. https://doi.org/10.1002/jmri.22834.
- Bengtsson Moström E, Lammentausta E, Finnbogason T, Weidenhielm L, Janarv P-M, Tiderius CJ. Pre- and postcontrast T1 and T2 mapping of patellar cartilage in young adults with recurrent patellar dislocation. Magn Reson Med. 2015;74(5):1363–9. https://doi.org/10.1002/mrm.25511.
- Bining HJS, Santos R, Andrews G, Forster BB. Can T2 relaxation values and color maps be used to detect chondral damage utilizing subchondral bone marrow edema as a marker? Skelet Radiol. 2009;38(5):459–65. https://doi. org/10.1007/s00256-008-0629-y.
- Bolbos RI, Ma CB, Link TM, Majumdar S, Li X. In vivo T1rho quantitative assessment of knee cartilage after anterior cruciate ligament injury using 3 tesla magnetic resonance imaging. Investig Radiol. 2008;43(11):782–8. https://doi.org/10.1097/RLI.0b013e318184a451.
- Farrokhi S, Colletti PM, Powers CM. Differences in patellar cartilage thickness, transverse relaxation time, and deformational behavior. Am J Sports Med. 2011;39(2):384–91. https://doi.org/10.1177/0363546510381363.

- Gheno R, Yoon YC, Wang JH, Kim K, Baek S-Y. Changes in the T₂ relaxation value of the tibiofemoral articular cartilage about 6 months after anterior cruciate ligament reconstruction using the double-bundle technique. Br J Radiol. 2016;89(1060):20151002. https://doi.org/10.1259/bjr.20151002.
- Van Ginckel A, Verdonk P, Victor J, Witvrouw E. Cartilage status in relation to return to sports after anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(3):550–9. https://doi.org/10.1177/0363546512473568.
- Gupta R, Virayavanich W, Kuo D, et al. MR T1p quantification of cartilage focal lesions in acutely injured knees: correlation with arthroscopic evaluation. Magn Reson Imaging. 2014;32(10):1290–6. https://doi.org/10. 1016/J.MRI.2014.07.015.
- Haughom B, Schairer W, Souza RB, Carpenter D, Ma CB, Li X. Abnormal tibiofemoral kinematics following ACL reconstruction are associated with early cartilage matrix degeneration measured by MRI T1rho. Knee. 2012; 19(4):482–7. https://doi.org/10.1016/J.KNEE.2011.06.015.
- Hovis KK, Stehling C, Souza RB, et al. Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum. 2011;63(8):2248–56. https://doi.org/10.1002/art.30419.
- 57. Joseph GB, Baum T, Carballido-Gamio J, et al. Texture analysis of cartilage T2 maps: individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls data from the osteoarthritis initiative. Arthritis Res Ther. 2011;13(5):R153. https://doi.org/10.1186/ar3469.
- Kang CH, Kim HK, Shiraj S, Anton C, Kim DH, Horn PS. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage. Pediatr Radiol. 2016;46(8):1134–41. https://doi. org/10.1007/s00247-016-3574-2.
- Lansdown DA, Allen C, Zaid M, et al. A comprehensive in vivo kinematic, quantitative MRI and functional evaluation following ACL reconstruction a comparison between mini-two incision and anteromedial portal femoral tunnel drilling. Knee. 2015;22(6):547–53. https://doi.org/10.1016/J.KNEE.2014. 12.005.
- Lau BC, Thuillier DU, Pedoia V, et al. Inter- and intra-rater reliability of patellofemoral kinematic and contact area quantification by fast spin echo MRI and correlation with cartilage health by quantitative T1p MRI. Knee. 2016;23(1):13–9. https://doi.org/10.1016/J.KNEE.2015.08.017.
- Li H, Tao H, Hua Y, Chen J, Li Y, Chen S. Quantitative magnetic resonance imaging assessment of cartilage status: a comparison between young men with and without anterior cruciate ligament reconstruction. Arthrosc J Arthrosc Relat Surg. 2013;29(12):2012–9. https://doi.org/10.1016/J.ARTHRO. 2013.09.075.
- Okazaki K, Takayama Y, Osaki K, et al. Subclinical cartilage degeneration in young athletes with posterior cruciate ligament injuries detected with T1p magnetic resonance imaging mapping. Knee Surgery, Sport Traumatol Arthrosc. 2015;23(10):3094–100. https://doi.org/10.1007/s00167-014-3469-4.
- Osaki K, Okazaki K, Takayama Y, et al. Characterization of biochemical cartilage change after anterior cruciate ligament injury using T1ρ mapping magnetic resonance imaging. Orthop J Sport Med. 2015;3(5): 232596711558509. https://doi.org/10.1177/2325967115585092.
- Palmieri-Smith RM, Wojtys EM, Potter HG. Early cartilage changes after anterior cruciate ligament injury: evaluation with imaging and serum biomarkers—a pilot study. Arthrosc J Arthrosc Relat Surg. 2016;32(7): 1309–18. https://doi.org/10.1016/J.ARTHRO.2015.12.045.
- Pedoia V, Li X, Su F, Calixto N, Majumdar S. Fully automatic analysis of the knee articular cartilage T 10 relaxation time using voxel-based relaxometry. J Magn Reson Imaging. 2016;43(4):970–80. https://doi.org/10.1002/jmri.25065.
- Pedoia V, Russell C, Randolph A, Li X, Majumdar S, AF-ACL Consortium A-A. Principal component analysis-T1p voxel based relaxometry of the articular cartilage: a comparison of biochemical patterns in osteoarthritis and anterior cruciate ligament subjects. Quant Imaging Med Surg. 2016;6(6):623– 33. https://doi.org/10.21037/qims.2016.11.03.
- Pedoia V, Su F, Amano K, et al. Analysis of the articular cartilage T _{1p} and T ₂ relaxation times changes after ACL reconstruction in injured and contralateral knees and relationships with bone shape. J Orthop Res. 2017;35(3):707–17. https://doi.org/10.1002/jor.23398.
- Rehnitz C, Kupfer J, Streich NA, et al. Comparison of biochemical cartilage imaging techniques at 3 T MRI. Osteoarthr Cartil. 2014;22(10):1732–42. https://doi.org/10.1016/JJOCA.2014.04.020.
- 69. Russell C, Pedoia V, Souza RB, Majumdar S. Cross-sectional and longitudinal study of the impact of posterior meniscus horn lesions on adjacent cartilage

composition, patient-reported outcomes and gait biomechanics in subjects without radiographic osteoarthritis. Osteoarthr Cartil. 2017;25(5):708–17. https://doi.org/10.1016/JJOCA.2016.10.025.

- Sauerschnig M, Bauer JS, Kohn L, et al. Alignment does not influence cartilage T2 in asymptomatic knee joints. Knee Surgery, Sport Traumatol Arthrosc. 2014;22(6):1396–403. https://doi.org/10.1007/s00167-013-2756-9.
- Snoj Ž, Zupanc O, Salapura V. Retrospective quantitative cartilage and semiquantitative morphological evaluation at 6 years after ACL reconstruction. Arch Orthop Trauma Surg. 2016;136(7):967–74. https://doi.org/10.1007/ s00402-016-2463-3.
- Subhawong TK, Thakkar RS, Padua A, Flammang A, Chhabra A, Carrino JA. Patellofemoral friction syndrome: magnetic resonance imaging correlation of morphologic and T2 cartilage imaging. J Comput Assist Tomogr. 2014; 38(2):308–12. https://doi.org/10.1097/RCT.0b013e3182aab187.
- Su F, Hilton JF, Nardo L, et al. Cartilage morphology and T1p and T2 quantification in ACL-reconstructed knees: a 2-year follow-up. Osteoarthr Cartil. 2013;21(8):1058–67. https://doi.org/10.1016/JJOCA.2013.05.010.
- Theologis AA, Haughom B, Liang F, et al. Comparison of T1rho relaxation times between ACL-reconstructed knees and contralateral uninjured knees. Knee Surgery, Sport Traumatol Arthrosc. 2014;22(2):298–307. https://doi.org/ 10.1007/s00167-013-2397-z.
- Thuillier DU, Souza RB, Wu S, Luke A, Li X, Feeley BT. T_{1ρ} imaging demonstrates early changes in the lateral Patella in patients with patellofemoral pain and Maltracking. Am J Sports Med. 2013;41(8):1813–8. https://doi.org/10.1177/ 0363546513495167.
- Wirth W, Maschek S, Roemer FW, Eckstein F. Layer-specific femorotibial cartilage T2 relaxation time in knees with and without early knee osteoarthritis: data from the osteoarthritis initiative (OAI). Sci Rep. 2016;6:34202. https://doi. org/10.1038/srep34202.
- Witschey WRT, Borthakur A, Fenty M, et al. T1p MRI quantification of arthroscopically confirmed cartilage degeneration. Magn Reson Med. 2010;63(5):1376–82. https://doi.org/10.1002/mrm.22272.
- Xu J, Xie G, Di Y, Bai M, Zhao X. Value of T2-mapping and DWI in the diagnosis of early knee cartilage injury. J Radiol Case Rep. 2011;5(2):13–8. https://doi.org/10.3941/jrcr.v5i2.515.
- Zaid M, Lansdown D, Su F, et al. Abnormal tibial position is correlated to early degenerative changes one year following ACL reconstruction. J Orthop Res. 2015;33(7):1079–86. https://doi.org/10.1002/jor.22867.
- Kim C-W, Hosseini A, Lin L, et al. Quantitative analysis of T2 relaxation times of the patellofemoral joint cartilage 3 years after anterior cruciate ligament reconstruction; 2018. https://doi.org/10.1016/j.jot.2017.06.002.
- Kogan F, Fan AP, Monu U, lagaru A, Hargreaves BA, Gold GE. Quantitative imaging of bone-cartilage interactions in ACL-injured patients with PET-MRI. Osteoarthr Cartil. 2018;26(6):790–6. https://doi.org/10.1016/j.joca.2018.04.001.
- Moström EB, Lammentausta E, Finnbogason T, Weidenhielm L, Janarv P-M, Tiderius CJ. T2 mapping and post-contrast T1 (dGEMRIC) of the patellar cartilage: 12-year follow-up after patellar stabilizing surgery in childhood. Acta Radiol Open. 2017;6(10):205846011773880. https://doi.org/10.1177/2058460117738808.
- Pfeiffer S, Harkey MS, Stanley LE, et al. Associations between slower walking speed and T1p magnetic resonance imaging of femoral cartilage following anterior cruciate ligament reconstruction. Arthritis Care Res (Hoboken). 2018; 70(8):1132–40. https://doi.org/10.1002/acr.23477.
- Pietrosimone B, Nissman D, Padua DA, et al. Associations between cartilage proteoglycan density and patient outcomes 12 months following anterior cruciate ligament reconstruction. Knee. 2017;25(1):118–29. https://doi.org/10. 1016/j.knee.2017.10.005.
- Amano K, Pedoia V, Su F, Souza RB, Li X, Ma CB. Persistent biomechanical alterations after ACL reconstruction are associated with early cartilage matrix changes detected by quantitative MR. Orthop J Sport Med. 2016;4(4): 232596711664442. https://doi.org/10.1177/2325967116644421.
- Tao H, Qiao Y, Hu Y, et al. Quantitative T2-mapping and T2*-mapping evaluation of changes in cartilage matrix after acute anterior cruciate ligament rupture and the correlation between the results of both methods. Biomed Res Int. 2018:1–8. https://doi.org/10.1155/2018/7985672.
- Teng H-L, Wu D, Su F, et al. Gait characteristics associated with a greater increase in medial knee cartilage T1rho and T2 relaxation times in patients undergoing anterior cruciate ligament reconstruction. Am J Med. 2017; 45(14):3262–71. https://doi.org/10.1177/0363546517723007.
- Wang X, Wrigley TV, Bennell KL, et al. Cartilage quantitative T2 relaxation time 2-4 years following isolated anterior cruciate ligament reconstruction. J Orthop Res. 2018;36(7):2022–9. https://doi.org/10.1002/jor.23846.

- Mosher TJ, Liu Y, Yang QX, et al. Age dependency of cartilage magnetic resonance imaging T2 relaxation times in asymptomatic women. Arthritis Rheum. 2004;50(9):2820–8. https://doi.org/10.1002/art.20473.
- Collins AT, Kulvaranon ML, Cutcliffe HC, et al. Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI. Arthritis Res Ther. 2018;20(1):232. https://doi.org/10.1186/s13075-018-1727-4.
- van der Heijden RA, Oei EHG, Bron EE, et al. No difference on quantitative magnetic resonance imaging in patellofemoral cartilage composition between patients with patellofemoral pain and healthy controls. Am J Sports Med. 2016;44(5):1172–8. https://doi.org/10.1177/0363546516632507.
- Apprich S, Welsch GH, Mamisch TC, et al. Detection of degenerative cartilage disease: comparison of high-resolution morphological MR and quantitative T2 mapping at 3.0 tesla. Osteoarthr Cartil. 2010;18(9):1211–7. https://doi.org/10.1016/JJOCA.2010.06.002.
- Apprich S, Mamisch TC, Welsch GH, et al. Quantitative T2 mapping of the patella at 3.0 T is sensitive to early cartilage degeneration, but also to loading of the knee. Eur J Radiol. 2012;81(4):e438–43. https://doi.org/10. 1016/J.EJRAD.2011.03.069.
- Klocke NF, Amendola A, Thedens DR, Williams GN, Luty CM, Martin JA & Pedersen DR. Comparison of T1p , dGEMRIC, and quantitative T2 MRI in preoperative ACL rupture patients. Academic Radiology. 2013;20(1):99-107. https://doi.org/10.1016/j.acra.2012.07.009.
- Terrin N, Schmid CH, Lau J, Olkin I. Adjusting for publication bias in the presence of heterogeneity. Stat Med. 2003;22(13):2113–26. https://doi.org/ 10.1002/sim.1461.
- Welsch GH, Apprich S, Zbyn S, et al. Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7T) compared with high field (3T) strength. Eur Radiol. 2011;21(6):1136–43. https://doi.org/10.1007/s00330-010-2029-7.
- Balamoody S, Williams TG, Wolstenholme C, et al. Magnetic resonance transverse relaxation time T2 of knee cartilage in osteoarthritis at 3-T: a cross-sectional multicentre, multivendor reproducibility study. Skelet Radiol. 2013;42(4):511–20. https://doi.org/10.1007/s00256-012-1511-5.
- Dardzinski BJ, Schneider E. Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin–spin (T2) relaxation time measurements. Osteoarthr Cartil. 2013;21(5):710–20. https://doi.org/10.1016/J.JOCA.2013.01.006.
- Matzat SJ, McWalter EJ, Kogan F, Chen W, Gold GE. T₂ relaxation time quantitation differs between pulse sequences in articular cartilage. J Magn Reson Imaging. 2015;42(1):105–13. https://doi.org/10.1002/jmri.24757.
- Pai A, Li X, Majumdar S. A comparative study at 3 T of sequence dependence of T2 quantitation in the knee. Magn Reson Imaging. 2008;26(9):1215–20. https://doi.org/10.1016/J.MRI.2008.02.017.
- Lüsse S, Knauss R, Werner A, Gründer W, Arnold K. Action of compression and cations on the proton and deuterium relaxation in cartilage. Magn Reson Med. 1995;33(4):483–9. https://doi.org/10.1002/mrm.1910330405.
- Lüssea S, Claassen H, Gehrke T, et al. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn Reson Imaging. 2000;18(4):423–30. https://doi.org/10.1016/S0730-725X(99)00144-7.
- Crawley AP, Henkelman RM. Errors inT2 estimation using multislice multipleecho imaging. Magn Reson Med. 1987;4(1):34–47. https://doi.org/10.1002/ mrm.1910040105.
- Eckstein F, Heudorfer L, Faber SC, Burgkart R, Englmeier K-H, Reiser M. Longterm and resegmentation precision of quantitative cartilage MR imaging (qMRI). Osteoarthr Cartil. 2002;10(12):922–8. https://doi.org/10.1053/JOCA. 2002.0844.
- Eckstein F, Ateshian G, Burgkart R, et al. Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthr Cartil. 2006;14(10):974–83. https://doi.org/10.1016/J. JOCA.2006.03.005.
- 106. Li X, Pedoia V, Kumar D, et al. Cartilage T1p and T2 relaxation times: longitudinal reproducibility and variations using different coils, MR systems and sites. Osteoarthr Cartil. 2015;23(12):2214–23. https://doi.org/ 10.1016/JJOCA.2015.07.006.
- Mosher TJ, Zhang Z, Reddy R, et al. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology. 2011;258(3):832–42. https://doi.org/10. 1148/radiol.10101174.
- Singh A, Haris M, Cai K, Kogan F, Hariharan H, Reddy R. High resolution T1p mapping of in vivo human knee cartilage at 7T. Zadpoor AA, ed. PLoS One. 2014;9(5):e97486. https://doi.org/10.1371/journal.pone.0097486.

- Li X, Han ET, Ma CB, Link TM, Newitt DC, Majumdar S. In vivo 3T spiral imaging based multi-slice T1p mapping of knee cartilage in osteoarthritis. Magn Reson Med. 2005;54(4):929–36. https://doi.org/10.1002/mrm.20609.
- Liess C, Lüsse S, Karger N, Heller M, Glüer C-C. Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthr Cartil. 2002;10(12):907–13. https://doi.org/10.1053/JOCA.2002.0847.
- 111. Liu F, Choi KW, Samsonov A, et al. Articular cartilage of the human knee joint: in vivo multicomponent T2 analysis at 3.0 T. Radiology. 2015;277(2): 477–88. https://doi.org/10.1148/radiol.2015142201.
- 112. Carballido-Gamio J, Link TM, Majumdar S. New techniques for cartilage magnetic resonance imaging relaxation time analysis: texture analysis of flattened cartilage and localized intra- and inter-subject comparisons. Magn Reson Med. 2008;59(6):1472–7. https://doi.org/10.1002/mrm.21553.
- Duryea J, Cheng C, Schaefer LF, Smith S, Madore B. Integration of accelerated MRI and post-processing software: a promising method for studies of knee osteoarthritis. Osteoarthr Cartil. 2016;24(11):1905–9. https://doi.org/10.1016/J.JOCA.2016.06.001.
- 114. Hannila I, Susanna Räinä S, Tervonen O, Ojala R, Nieminen MT. Topographical variation of T2 relaxation time in the young adult knee cartilage at 1.5 T. Osteoarthr Cartil. 2009;17(12):1570–5. https://doi.org/ 10.1016/J.JOCA.2009.05.011.
- 115. Jordan CD, McWalter EJ, Monu UD, et al. Variability of CubeQuant T1p, quantitative DESS T2, and cones sodium MRI in knee cartilage. Osteoarthr Cartil. 2014;22(10):1559–67. https://doi.org/10.1016/J.JOCA.2014.06.001.
- 116. Li X, Wyatt C, Rivoire J, et al. Simultaneous acquisition of T _{1p} and T ₂ quantification in knee cartilage: repeatability and diurnal variation. J Magn Reson Imaging. 2014;39(5):1287–93. https://doi.org/10.1002/jmri.24253.
- Buckler AJ, Bresolin L, Dunnick NR, Sullivan DC. Group F the. A collaborative Enterprise for Multi-Stakeholder Participation in the advancement of quantitative imaging. Radiology. 2011;258(3):906–14. https://doi.org/10.1148/ radiol.10100799.
- Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr Cartil. 2008;16(12):1433–41. https://doi.org/10.1016/j.joca.2008.06.016.
- 119. Keenan KE, Ainslie M, Barker AJ, et al. Quantitative magnetic resonance imaging phantoms: a review and the need for a system phantom. Magn Reson Med. 2018;79(1):48–61. https://doi.org/10.1002/mrm.26982.
- Xia Y, Moody JB, Burton-Wurster N, Lust G. Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage. Osteoarthr Cartil. 2001;9(5):393–406. https://doi.org/10. 1053/JOCA.2000.0405.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

