3,615 research outputs found

    BCS-BEC crossover in bilayers of cold fermionic polar molecules

    Get PDF
    We investigate the quantum and thermal phase diagram of fermionic polar molecules loaded in a bilayer trapping potential with perpendicular dipole moment. We use both a BCS-theory approach that is most reliable at weak coupling and a strong-coupling approach that considers the two-body bound dimer states with one molecule in each layer as the relevant degree of freedom. The system ground state is a Bose-Einstein condensate (BEC) of dimer bound states in the low-density limit and a paired superfluid (BCS) state in the high-density limit. At zero temperature, the intralayer repulsion is found to broaden the regime of BCS-BEC crossover and can potentially induce system collapse through the softening of roton excitations. The BCS theory and the strongly coupled dimer picture yield similar predictions for the parameters of the crossover regime. The Berezinskii-Kosterlitz-Thouless transition temperature of the dimer superfluid is also calculated. The crossover can be driven by many-body effects and is strongly affected by the intralayer interaction which was ignored in previous studies

    Electron-electron interaction and charging effects in graphene quantum dots

    Full text link
    We analyze charging effects in graphene quantum dots. Using a simple model, we show that, when the Fermi level is far from the neutrality point, charging effects lead to a shift in the electrostatic potential and the dot shows standard Coulomb blockade features. Near the neutrality point, surface states are partially occupied and the Coulomb interaction leads to a strongly correlated ground state which can be approximated by either a Wigner crystal or a Laughlin like wave function. The existence of strong correlations modify the transport properties which show non equilibrium effects, similar to those predicted for tunneling into other strongly correlated systems.Comment: Extended version accepted for publication at Phys. Rev.

    Neural-Network Vector Controller for Permanent-Magnet Synchronous Motor Drives: Simulated and Hardware-Validated Results

    Get PDF
    This paper focuses on current control in a permanentmagnet synchronous motor (PMSM). The paper has two main objectives: The first objective is to develop a neural-network (NN) vector controller to overcome the decoupling inaccuracy problem associated with conventional PI-based vector-control methods. The NN is developed using the full dynamic equation of a PMSM, and trained to implement optimal control based on approximate dynamic programming. The second objective is to evaluate the robust and adaptive performance of the NN controller against that of the conventional standard vector controller under motor parameter variation and dynamic control conditions by (a) simulating the behavior of a PMSM typically used in realistic electric vehicle applications and (b) building an experimental system for hardware validation as well as combined hardware and simulation evaluation. The results demonstrate that the NN controller outperforms conventional vector controllers in both simulation and hardware implementation

    Casimir interactions in graphene systems

    Full text link
    The non-retarded Casimir interaction (van der Waals interaction) between two free standing graphene sheets as well as between a graphene sheet and a substrate is determined. An exact analytical expression is given for the dielectric function of graphene along the imaginary frequency axis within the random phase approximation for arbitrary frequency, wave vector, and doping.Comment: 4 pages, 4 figure

    Upper ocean manifestations of a reducing meridional overturning circulation

    Get PDF
    Most climate models predict a slowing down of the Atlantic Meridional Overturning Circulation during the 21st century. Using a 100year climate change integration of a high resolution coupled climate model, we show that a 5.3Sv reduction in the deep southward transport in the subtropical North Atlantic is balanced solely by a weakening of the northward surface western boundary current, and not by an increase in the southward transport integrated across the interior ocean away from the western boundary. This is consistent with Sverdrup balance holding to a good approximation outside of the western boundary region on decadal time scales, and may help to spatially constrain past and future change in the overturning circulation. The subtropical gyre weakens by 3.4Sv over the same period due to a weakened wind stress curl. These changes combine to give a net 8.7Sv reduction in upper western boundary transport. © 2012. American Geophysical Union. All Rights Reserved

    Closed-circuit television welding- electrode guidance system

    Get PDF
    Closed-circuit TV camera is mounted parallel to electrode and moves along with it. Camera is scanned along seam so seam is viewed parallel with scan lines on TV monitor. Two fiber optics illuminators are attached to guidance system; they illuminate seam for TV camera

    Coulomb Screening of 2D Massive Dirac Fermions

    Full text link
    A model of 2D massive Dirac fermions, interacting with a instantaneous 1/r1/r Coulomb interaction, is presented to mimic the physics of gapped graphene. The static polarization function is calculated explicitly to analyze screening effect at the finite temperature and density. Results are compared with the massless case . We also show that various other works can be reproduced within our model in a straightforward and unified manner

    Endowments and new institutions for long-term observations

    Get PDF
    Author Posting. © Oceanography Society, 2007. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 20, 4 (2007): 10-14.An ever-increasing volume of publications on the changing ocean environment underscores the requirement for long-term observations to understand and predict ocean and climate change. Such observations must be globally distributed and carried out over long time periods. But a means of obtaining those observations—particularly in the ocean—is not in place today. There is no global system of routinely funded, long-term, high-quality measurements to provide the necessary understanding of climate in general and the ocean in particular. The scientific literature is full of examples of tantalizing short records that do not illuminate the physical problems. Long-term biological measurements are in an even more limited state of development. With society demanding better forecasts, and the need to quantify the human role in climate change, it is more important than ever that we find ways to establish the necessary institutional basis for and achieve the proper levels of funding for long-term measurements

    Decompositions of High-Frequency Helmholtz Solutions via Functional Calculus, and Application to the Finite Element Method

    Get PDF
    Over the last 10 years, results from [J. M. Melenk and S. Sauter, Math. Comp., 79 (2010), pp. 1871–1914], [J. M. Melenk and S. Sauter, SIAM J. Numer. Anal., 49 (2011), pp. 1210–1243], [S. Esterhazy and J. M. Melenk, Numerical Analysis of Multiscale Problems, Springer, New York, 2012, pp. 285–324] and [J. M. Melenk, A. Parsania, and S. Sauter, J. Sci. Comput., 57 (2013), pp. 536–581] decomposing high-frequency Helmholtz solutions into “low-” and “high-” frequency components have had a large impact in the numerical analysis of the Helmholtz equation. These results have been proved for the constant-coefficient Helmholtz equation in either the exterior of a Dirichlet obstacle or an interior domain with an impedance boundary condition. Using the Helffer–Sjöstrand functional calculus [B. Helffer and J. Sjöstrand, Schrödinger Operators, Springer, Berlin, 1989, pp. 118–197] this paper proves analogous decompositions for scattering problems fitting into the black-box scattering framework of Sjöstrand and Zworski [J. Amer. Math. Soc., 4 (1991), pp. 729–769] thus covering Helmholtz problems with variable coefficients, impenetrable obstacles, and penetrable obstacles all at once. These results allow us to prove new frequency-explicit convergence results for (i) the hp-finite-element method (hp-FEM) applied to the variable-coefficient Helmholtz equation in the exterior of an analytic Dirichlet obstacle, where the coefficients are analytic in a neighborhood of the obstacle, and (ii) the h-FEM applied to the Helmholtz penetrable-obstacle transmission problem. In particular, the result in (i) shows that the hp-FEM applied to this problem does not suffer from the pollution effect

    Signatures of the superfluid to Mott insulator transition in equilibrium and in dynamical ramps

    Get PDF
    We investigate the equilibrium and dynamical properties of the Bose-Hubbard model and the related particle-hole symmetric spin-1 model in the vicinity of the superfluid to Mott insulator quantum phase transition. We employ the following methods: exact-diagonalization, mean field (Gutzwiller), cluster mean-field, and mean-field plus Gaussian fluctuations. In the first part of the paper we benchmark the four methods by analyzing the equilibrium problem and give numerical estimates for observables such as the density of double occupancies and their correlation function. In the second part, we study parametric ramps from the superfluid to the Mott insulator and map out the crossover from the regime of fast ramps, which is dominated by local physics, to the regime of slow ramps with a characteristic universal power law scaling, which is dominated by long wavelength excitations. We calculate values of several relevant physical observables, characteristic time scales, and an optimal protocol needed for observing universal scaling.Comment: 23 pages, 13 figure
    • …
    corecore