14 research outputs found
Efficacy and safety of vertebroplasty for treatment of painful osteoporotic vertebral fractures: a randomised controlled trial [ACTRN012605000079640]
Background. Vertebroplasty is a promising but as yet unproven treatment for painful osteoporotic vertebral fractures. It involves radiographic-guided injection of various types of bone cement directly into the vertebral fracture site. Uncontrolled studies and two controlled quasi-experimental before-after studies comparing volunteers who were offered treatment to those who refused it, have suggested an early benefit including rapid pain relief and improved function. Conversely, several uncontrolled studies and one of the controlled before-after studies have also suggested that vertebroplasty may increase the risk of subsequent vertebral fractures, particularly in vertebrae adjacent to treated levels or if cement leakage into the adjacent disc has occurred. As yet, there are no completed randomised controlled trials of vertebroplasty for osteoporotic vertebral fractures. The aims of this participant and outcome assessor-blinded randomised placebo-controlled trial are to i) determine the short-term efficacy and safety (3 months) of vertebroplasty for alleviating pain and improving function for painful osteoporotic vertebral fractures; and ii) determine its medium to longer-term efficacy and safety, particularly the risk of further fracture over 2 years. Design. A double-blind randomised controlled trial of 200 participants with one or two recent painful osteoporotic vertebral fractures. Participants will be stratified by duration of symptoms (< and ≥ 6 weeks), gender and treating radiologist and randomly allocated to either the treatment or placebo. Outcomes will be assessed at baseline, 1 week, 1, 3, 6, 12 and 24 months. Outcome measures include overall, night and rest pain on 10 cm visual analogue scales, quality of life measured by the Assessment of Quality of Life, Osteoporosis Quality of Life and EQ-5D questionnaires; participant perceived recovery on a 7-point ordinal scale ranging from 'a great deal worse' to 'a great deal better'; disability measured by the Roland-Morris Disability Questionnaire; timed 'Up and Go' test; and adverse effects. The presence of new fractures will be assessed by radiographs of the thoracic and lumbar spine performed at 12 and 24 months. Discussion. The results of this trial will be of major international importance and findings will be immediately translatable into clinical practice. Trial registration. Australian Clinical Trial Register # [ACTRN012605000079640]. © 2008 Buchbinder et al; licensee BioMed Central Ltd.Rachelle Buchbinder, Richard H Osborne, Peter R Ebeling, John D Wark, Peter Mitchell, Chris J Wriedt, Lainie Wengier, David Connell, Stephen E Graves, Margaret P Staples and Bridie Murph
Synaptic contributions to cochlear outer hair cell Ca<sup>2+</sup> homeostasis
AbstractFor normal cochlear function, outer hair cells (OHCs) require a precise regulation of intracellular Ca2+ levels. Influx of Ca2+ occurs both at the stereocillia tips and through the basolateral membrane. In this latter compartment, two different origins for Ca2+ influx have been poorly explored: voltage-gated Ca2+ channels (VGCC) at synapses with type II afferent neurons, and α9α10 cholinergic nicotinic receptors at synapses with medio-olivochlear complex (MOC) neurons. Using functional imaging in rodent OHCs, we report that these two Ca2+ entry sites are closely positioned, but present different regulation mechanisms. Ca2+ spread from MOC synapses is contained by cisternal Ca2+-ATPases. Considered a weak drive for transmitter release, we unexpectedly found that VGCC Ca2+ signals are comparable in size to those elicited by α9α10 and can be potentiated by ryanodine receptors. Finally, we showed that sorcin, a highly expressed gene product in OHCs with reported Ca2+ control function in cardiomy-ocytes, regulates basal Ca2+ levels and MOC synaptic activity in OHCs.</jats:p
Modified Mesoporous Silica Nanoparticles with a Dual Synergetic Antibacterial Effect
Application of mesoporous silica nanoparticles (MSNs) as antifouling/antibacterial carriers is limited and specifically with a dual synergetic effect. In the present work, MSNs modified with quaternary ammonium salts (QASs) and loaded with the biocide Parmetol S15 were synthesized as functional fillers for antifouling/antibacterial coatings. From the family of the MSNs, MCM-48 was selected as a carrier because of its cubic pore structure, high surface area, and high specific pore volume. The QASs used for the surface modification of MCM-48 were dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride and dimethyltetradecyl[3-(triethoxysilyl)propyl]ammonium chloride. The QAS-modified MCM-48 reveals strong covalent bonds between the QAS and the surface of the nanoparticles. The surface functionalization was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and ζ-potential measurements. Additional loading of the QAS-modified MCM-48 with a commercially available biocide (Parmetol S15) resulted in a synergetic dual antibacterial/antifouling effect. Either loaded or unloaded QAS-modified MSNs exhibited high antibacterial performance confirming their dual activity. The QAS-modified MCM-48 loaded with the biocide Parmetol S15 killed all exposed bacteria after 3 h of incubation and presented 100% reduction at the antibacterial tests against Gram-negative and Gram-positive bacteria. Furthermore, the QAS-modified MCM-48 without Parmetol S15 presented 77-89% reduction against the exposed Gram-negative bacteria and 78-94% reduction against the exposed Gram-positive bacteria. In addition, the modified MCM-48 was mixed with coating formulations, and its antifouling performance was assessed in a field test trial in northern Red Sea. All synthesized paints presented significant antifouling properties after 5 months of exposure in real seawater conditions, and the dual antifouling effect of the nanoparticles was confirmed
The receptor kinases LePRK1 and LePRK2 associate in pollen and when expressed in yeast, but dissociate in the presence of style extract
After pollen grains germinate on the stigma, pollen tubes traverse the extracellular matrix of the style on their way to the ovules. We previously characterized two pollen-specific, receptor-like kinases, LePRK1 and LePRK2, from tomato (Lycopersicon esculentum). Their structure and immunolocalization pattern and the specific dephosphorylation of LePRK2 suggested that these kinases might interact with signaling molecules in the style extracellular matrix. Here, we show that LePRK1 and LePRK2 can be coimmunoprecipitated from pollen or when expressed together in yeast. In yeast, their association requires LePRK2 kinase activity. In pollen, LePRK1 and LePRK2 are found in an ≈400-kDa protein complex that persists on pollen germination, but this complex is disrupted when pollen is germinated in vitro in the presence of style extract. In yeast, the addition of style extract also disrupts the interaction between LePRK1 and LePRK2. Fractionation of the style extract reveals that the disruption activity is enriched in the 3- to 10-kDa fraction. A component(s) in this fraction also is responsible for the specific dephosphorylation of LePRK2. The style component(s) that dephosphorylates LePRK2 is likely to be a heat-stable peptide that is present in exudate from the style. The generally accepted model of receptor kinase signaling involves binding of a ligand to extracellular domains of receptor kinases and subsequent activation of the signaling pathway by receptor autophosphorylation. In contrast to this typical scenario, we propose that a putative style ligand transduces the signal in pollen tubes by triggering the specific dephosphorylation of LePRK2, followed by dissociation of the LePRK complex
