48 research outputs found

    Identification of novel bile acids as biomarkers for the early diagnosis of Niemann-Pick C disease

    Get PDF
    This article describes a rapid UPLC-MS/MS method to quantitate novel bile acids in biological fluids and the evaluation of their diagnostic potential in Niemann-Pick C (NPC). Two new compounds, NPCBA1 (3β-hydroxy,7β-N-acetylglucosaminyl-5-cholenoic acid) and NPCBA2 (probably 3β,5α,6β-trihydroxycholanoyl-glycine), were observed to accumulate preferentially in NPC patients: median plasma concentrations of NPCBA1 and NPCBA2 were 40- and 10-fold higher in patients than in controls. However, NPCBA1 concentrations were normal in some patients because they carried a common mutation inactivating the GlcNAc transferase required for the synthesis of this bile acid. NPCBA2, not containing a GlcNAc moiety, is thus a better NPC biomarker

    A novel, highly sensitive and specific biomarker for Niemann-Pick type C1 disease

    Get PDF
    Background Lysosomal storage disorders (LSDs), are a heterogeneous group of rare disorders caused by defects in genes encoding for proteins involved in the lysosomal degradation of macromolecules. They occur at a frequency of about 1 in 5,000 live births, though recent neonatal screening suggests a higher incidence. New treatment options for LSDs demand a rapid, early diagnosis of LSDs if maximal clinical benefit is to be achieved. Methods Here, we describe a novel, highly specific and sensitive biomarker for Niemann-Pick Type C disease type 1 (NPC1), lyso-sphingomyelin-509. We cross-validate this biomarker with cholestane-3β,5α,6β-triol and relative lysosomal volume. The primary cohort for establishment of the biomarker contained 135 NPC1 patients, 66 NPC1 carriers, 241 patients with other LSDs and 46 healthy controls. Results With a sensitivity of 100.0% and specificity of 91.0% a cut-off of 1.4 ng/ml was established. Comparison with cholestane-3β,5α,6β-triol and relative acidic compartment volume measurements were carried out with a subset of 125 subjects. Both cholestane-3β,5α,6β-triol and lyso-Sphingomyelin-509 were sufficient in establishing the diagnosis of NPC1 and correlated with disease severity. Conclusion In summary, we have established a new biomarker for the diagnosis of NPC1, and further studies will be conducted to assess correlation to disease progress and monitoring treatment

    Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway

    Get PDF
    Background. Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with intracellular mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC.  Methods. The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed.  Results. Macrophages infected with intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca 2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca 2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells.  Conclusion. These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies

    Lipid metabolic perturbation is an early-onset phenotype in adult spinster mutants: a Drosophila model for lysosomal storage disorders

    Get PDF
    Intracellular accumulation of lipids and swollen dysfunctional lysosomes are linked to several neurodegenerative diseases, including lysosomal storage disorders (LSD). Detailed characterization of lipid metabolic changes in relation to the onset and progression of neurodegeneration is currently missing. We systematically analyzed lipid perturbations in spinster (spin) mutants, a Drosophila model of LSD-like neurodegeneration. Our results highlight an imbalance in brain ceramide and sphingosine in the early stages of neurodegeneration, preceding the accumulation of endomembranous structures, manifestation of altered behavior, and buildup of lipofuscin. Manipulating levels of ceramidase and altering these lipids in spin mutants allowed us to conclude that ceramide homeostasis is the driving force in disease progression and is integral to spin function in the adult nervous system. We identified 29 novel physical interaction partners of Spin and focused on the lipid carrier protein, Lipophorin (Lpp). A subset of Lpp and Spin colocalize in the brain and within organs specialized for lipid metabolism (fat bodies and oenocytes). Reduced Lpp protein was observed in spin mutant tissues. Finally, increased levels of lipid metabolites produced by oenocytes in spin mutants allude to a functional interaction between Spin and Lpp, underscoring the systemic nature of lipid perturbation in LSD

    Annual severity increment score as a tool for stratifying patients with Niemann-Pick disease type C and for recruitment to clinical trials

    Get PDF
    BACKGROUND: Niemann-Pick disease type C (NPC) is a lysosomal storage disease with a heterogeneous neurodegenerative clinical course. Multiple therapies are in clinical trials and inclusion criteria are currently mainly based on age and neurological signs, not taking into consideration differential individual rates of disease progression. RESULTS: In this study, we have evaluated a simple metric, denoted annual severity increment score (ASIS), that measures rate of disease progression and could easily be used in clinical practice. We show that ASIS is stable over several years and can be used to stratify patients for clinical trials. It achieves greater homogeneity of the study cohort relative to age-based inclusion and provides an evidence-based approach for establishing inclusion/exclusion criteria. In addition, we show that ASIS has prognostic value and demonstrate that treatment with an experimental therapy - acetyl-DL-leucine - is associated with a reduction in ASIS scores. CONCLUSION: ASIS has the potential to be a useful metric for clinical monitoring, trial recruitment, for prognosis and measuring response to therapy

    Identification of an Intracellular Site of Prion Conversion

    Get PDF
    Prion diseases are fatal, neurodegenerative disorders in humans and animals and are characterized by the accumulation of an abnormally folded isoform of the cellular prion protein (PrPC), denoted PrPSc, which represents the major component of infectious scrapie prions. Characterization of the mechanism of conversion of PrPC into PrPSc and identification of the intracellular site where it occurs are among the most important questions in prion biology. Despite numerous efforts, both of these questions remain unsolved. We have quantitatively analyzed the distribution of PrPC and PrPSc and measured PrPSc levels in different infected neuronal cell lines in which protein trafficking has been selectively impaired. Our data exclude roles for both early and late endosomes and identify the endosomal recycling compartment as the likely site of prion conversion. These findings represent a fundamental step towards understanding the cellular mechanism of prion conversion and will allow the development of new therapeutic approaches for prion diseases

    Relative acidic compartment volume as a lysosomal storage disorder–associated biomarker

    Get PDF
    Lysosomal storage disorders (LSDs) occur at a frequency of 1 in every 5,000 live births and are a common cause of pediatric neurodegenerative disease. The relatively small number of patients with LSDs and lack of validated biomarkers are substantial challenges for clinical trial design. Here, we evaluated the use of a commercially available fluorescent probe, Lysotracker, that can be used to measure the relative acidic compartment volume of circulating B cells as a potentially universal biomarker for LSDs. We validated this metric in a mouse model of the LSD Niemann-Pick type C1 disease (NPC1) and in a prospective 5-year international study of NPC patients. Pediatric NPC subjects had elevated acidic compartment volume that correlated with age-adjusted clinical severity and was reduced in response to therapy with miglustat, a European Medicines Agency–approved drug that has been shown to reduce NPC1-associated neuropathology. Measurement of relative acidic compartment volume was also useful for monitoring therapeutic responses of an NPC2 patient after bone marrow transplantation. Furthermore, this metric identified a potential adverse event in NPC1 patients receiving i.v. cyclodextrin therapy. Our data indicate that relative acidic compartment volume may be a useful biomarker to aid diagnosis, clinical monitoring, and evaluation of therapeutic responses in patients with lysosomal disorders

    Glycosphingolipid metabolism and its role in ageing and Parkinson’s disease

    No full text
    It is well established that lysosomal glucocerebrosidase gene (GBA) variants are a risk factor for Parkinson’s disease (PD), with increasing evidence suggesting a loss of function mechanism. One question raised by this genetic association is whether variants of genes involved in other aspects of sphingolipid metabolism are also associated with PD. Recent studies in sporadic PD have identified variants in multiple genes linked to diseases of glycosphingolipid (GSL) metabolism to be associated with PD. GSL biosynthesis is a complex pathway involving the coordinated action of multiple enzymes in the Golgi apparatus. GSL catabolism takes place in the lysosome and is dependent on the action of multiple acid hydrolases specific for certain substrates and glycan linkages. The finding that variants in multiple GSL catabolic genes are over-represented in PD in a heterozygous state highlights the importance of GSLs in the healthy brain and how lipid imbalances and lysosomal dysfunction are associated with normal ageing and neurodegenerative diseases. In this article we will explore the link between lysosomal storage disorders and PD, the GSL changes seen in both normal ageing, lysosomal storage disorders (LSDs) and PD and the mechanisms by which these changes can affect neurodegeneration
    corecore