73 research outputs found

    On the Variational Principle for Generalized Gibbs Measures

    Get PDF
    We present a novel approach to establishing the variational principle for Gibbs and generalized (weak and almost) Gibbs states. Limitations of a thermodynamical formalism for generalized Gibbs states will be discussed. A new class of intuitively weak Gibbs measures is introduced, and a typical example is studied. Finally, we present a new example of a non-Gibbsian measure arising from an industrial application.Comment: To appear in Markov Processes and Related Fields, Proceedings workshop Gibbs-nonGibb

    Linearly edge-reinforced random walks

    Full text link
    We review results on linearly edge-reinforced random walks. On finite graphs, the process has the same distribution as a mixture of reversible Markov chains. This has applications in Bayesian statistics and it has been used in studying the random walk on infinite graphs. On trees, one has a representation as a random walk in an independent random environment. We review recent results for the random walk on ladders: recurrence, a representation as a random walk in a random environment, and estimates for the position of the random walker.Comment: Published at http://dx.doi.org/10.1214/074921706000000103 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Electrochemical Reducing of Terbium and Holmium Ions in the Sodium and Potassium Chlorides Melt with Equimolar Composition

    Get PDF
    Interest to rare-earth metals (REM) and their alloys is due to the possibility of using them for the creation of new materials need for modern technology. For instance, REM as alloying components allows for preparation of material with special magnetic properties. A promising method for forming such coating is the surface treatment of metals. This process has an electrochemical character as such for the organization of technology the knowledge of kinetics and mechanism of these processes is important. Despite significant interest in rare-earth metals, these issues are not well described in the literature. In order to choose an adequate mathematical model for calculation of kinetic primers, preliminary experiments that allow evaluating the reversibility of the electrode process have been conducted. Based on that, it was concluded that cathodic reduction of terbium and holmium ions in equimolar NaCl-KCl melt is irreversible. By means of voltammetric analysis, kinetic parameters (transfer coefficients, heterogeneous constants of charge transfer rate) of terbium and holmium electroreduction in equimolar NaCl-KCl melt were determined. The experiment was conducted in a three-electrode cell under a purified argon atmosphere. A dependency of kinetic parameters on the concentration of terbium and holmium chlorides wt (%): 1, 3, 5, 7, 10, was determined. The experiment was conducted in 1073–1173K temperature range. Values of kinetic parameters increase with temperature but decrease with the increase of REM chloride. Based on obtained data, it was found that electroreduction of chloride complexes LnCl63– (Ln–Tb, Ho) in equimolar NaCl-KCl melt is irreversible in the studied range of temperatures and REM concentrations. In summary of experimental data, in range of temperature and rare-earth chloride concentration, and assumption was made that reduction of terbium and holmium ions occurs in two stages. The process includes the preceding stage of complex dissociation. A mechanism of LnCl63– complex reduction in the mentioned melt is proposed. The obtained results are in agreement with literate data for analogues systems

    Determination Of Formation Regimes For Bilayer Cobalt Dysprosium Intermetalic Surface Alloy

    Full text link
    High tech industrial fields on modern development stage are in need of construction materials with an optimal ratio of volume and surface properties, along with low cost of material itself. As evidenced by studies, in order to give a set complex of properties to a workpiece that operates under specific conditions, it is often sufficient to only modify its surface area. Over the course of studies, by means of gravimetric, influence of technological parameters (temperature and time samples are kept in the melt) on specific mass change of cobalt samples, that act as substrate, during electroless diffusive saturation with dysprosium in eutectic melt of lithium and potassium chlorides have been studied. A mathematical dependency was established for specific mass change of cobalt samples on time spent in melt for temperature range of 873–973 K. Composition of intermetallic coats obtained on surface of cobalt samples was studied means of EDX and SEM analyses. It was discovered, that for chosen temperature range, diffusion layers formed on surface of cobalt samples consists of two structural zones that correspond to Co-Dy and Cp2Dy phases

    Discrete approximations to vector spin models

    Full text link
    We strengthen a result of two of us on the existence of effective interactions for discretised continuous-spin models. We also point out that such an interaction cannot exist at very low temperatures. Moreover, we compare two ways of discretising continuous-spin models, and show that, except for very low temperatures, they behave similarly in two dimensions. We also discuss some possibilities in higher dimensions.Comment: 12 page

    The RNA Editing Pattern of cox2 mRNA Is Affected by Point Mutations in Plant Mitochondria

    Get PDF
    The mitochondrial transcriptome from land plants undergoes hundreds of specific C-to-U changes by RNA editing. These events are important since most of them occur in the coding region of mRNAs. One challenging question is to understand the mechanism of recognition of a selected C residue (editing sites) on the transcript. It has been reported that a short region surrounding the target C forms the cis-recognition elements, but individual residues on it do not play similar roles for the different editing sites. Here, we studied the role of the −1 and +1 nucleotide in wheat cox2 editing site recognition using an in organello approach. We found that four different recognition patterns can be distinguished: (a) +1 dependency, (b) −1 dependency, (c) +1/−1 dependency, and (d) no dependency on nearest neighbor residues. A striking observation was that whereas a 23 nt cis region is necessary for editing, some mutants affect the editing efficiency of unmodified distant sites. As a rule, mutations or pre-edited variants of the transcript have an impact on the complete set of editing targets. When some Cs were changed into Us, the remaining editing sites presented a higher efficiency of C-to-U conversion than in wild type mRNA. Our data suggest that the complex response observed for cox2 mRNA may be a consequence of the fate of the transcript during mitochondrial gene expression

    Atomically precise semiconductor-graphene and hBN interfaces by Ge intercalation

    Get PDF
    The full exploration of the potential, which graphene offers to nanoelectronics requires its integration into semiconductor technology. So far the real-world applications are limited by the ability to concomitantly achieve large single-crystalline domains on dielectrics and semiconductors and to tailor the interfaces between them. Here we show a new direct bottom-up method for the fabrication of high-quality atomically precise interfaces between 2D materials, like graphene and hexagonal boron nitride (hBN), and classical semiconductor via Ge intercalation. Using angle-resolved photoemission spectroscopy and complementary DFT modelling we observed for the first time that epitaxially grown graphene with the Ge monolayer underneath demonstrates Dirac Fermions unaffected by the substrate as well as an unperturbed electronic band structure of hBN. This approach provides the intrinsic relativistic 2D electron gas towards integration in semiconductor technology. Hence, these new interfaces are a promising path for the integration of graphene and hBN into state-of-the-art semiconductor technology

    Synthesis, X-ray crystal structure and antimycobacterial activity of enantiomerically pure 1-ethyl-2,3-dicyano-5-(het)aryl-6-hetaryl-1,6- dihydropyrazines

    Full text link
    The Petasis reaction of 6-alkoxy adducts of 1-alkyl-2,3-dicyano-5- arylpyrazinium salts with aromatic boronic acids, such as 2-thienylboronic, 2-furanylboronic and 3-thienylboronic acids, or their benzo analogs in dichloromethane proceeds smoothly at room temperature with the formation of the corresponding 5-aryl-6-hetaryl substituted 1,6-dihydropyrazine derivatives. All dihydropyrazines were separated as pure enantiomers by chiral HPLC, and their absolute configurations for each pair of enantiomers have been determined by X-ray analysis. Individual enantiomers were screened in vitro for their antimycobacterial activities against Mycobacterium tuberculosis H37Rv, avium, terrae and extensively drug-resistant and multi-drug-resistant strains isolated from tuberculosis patients in Ural region (Russia). It has been shown that several compounds exhibit a good level of antituberculosis activity compared to the reference drugs. © ARKAT-USA, Inc
    corecore