23,899 research outputs found

    Global status of neutrino oscillation parameters after Neutrino-2012

    Get PDF
    Here we update the global fit of neutrino oscillations in arXiv:1103.0734 and arXiv:1108.1376 including the recent measurements of reactor antineutrino disappearance reported by the Double Chooz, Daya Bay and RENO experiments, together with latest MINOS and T2K appearance and disappearance results, as presented at the Neutrino-2012 conference. We find that the preferred global fit value of θ13\theta_{13} is quite large: sin2θ130.025\sin^2\theta_{13} \simeq 0.025 for normal and inverted neutrino mass ordering, with θ13=0\theta_{13} = 0 now excluded at more than 10σ\sigma. The impact of the new θ13\theta_{13} measurements over the other neutrino oscillation parameters is discussed as well as the role of the new long-baseline neutrino data and the atmospheric neutrino analysis in the determination of a non-maximal atmospheric angle θ23\theta_{23}.Comment: Note added, matches published version in Physical Review

    Lepton Flavour Violation in a Left-Right Symmetric Model

    Get PDF
    We consider in this paper a Left-Right symmetric gauge model in which a global lepton-number-like symmetry is introduced and broken spontaneously at a scale that could be as low as 10^4 GeV or so. The corresponding physical Nambu-Goldstone boson, which we call majoron and denote J, can have tree-level flavour-violating couplings to the charged fermions, leading to sizeable majoron-emitting lepton-flavour-violating weak decays. We consider explicitly a leptonic variant of the model and show that the branching ratios for \mu -> e+J, \tau -> e + J and \tau -> \mu + J decays can be large enough to fall within the sensitivities of future \mu and \tau factories. On the other hand the left-right gauge symmetry breaking scale may be as low as few TeV.Comment: LaTeX, 16 pages, 3 PS figures, uses JHEP.cls, published versio

    Neutrino oscillations refitted

    Get PDF
    Here we update our previous global fit of neutrino oscillations by including the recent results which have appeared since the Neutrino-2012 conference. These include the measurements of reactor anti-neutrino disappearance reported by Daya Bay and RENO, together with latest T2K and MINOS data including both disappearance and appearance channels. We also include the revised results from the third solar phase of Super-Kamiokande, SK-III, as well as new solar results from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred global determination of the atmospheric angle θ23\theta_{23} is consistent with maximal mixing. We also determine the impact of the new data upon all the other neutrino oscillation parameters with emphasis on the increasing sensitivity to the CP phase, thanks to the interplay between accelerator and reactor data. In the appendix we present the updated results obtained after the inclusion of new reactor data presented at the Neutrino 2014 conference. We discuss their impact on the global neutrino analysis.Comment: 13 pages, 5 figures, 2 tables. An appendix providing updated results after Neutrino-2014 Conference is added. Matches published version in Physical Review

    A Radial Velocity Survey for LMC Microlensed Sources

    Get PDF
    We propose a radial velocity survey with the aim to resolve the current dispute on the LMC lensing: in the pro-macho hypothesis the lenses are halo white dwarfs or machos in general; in the pro-star hypothesis both the lenses and the sources are stars in various observed or hypothesized structures of the Magellanic Clouds and the Galaxy. Star-star lensing should prefer sources at the backside or behind the LMC disc because lensing is most efficient if the source is located a few kpc behind a dense screen of stars, here the thin disc of the LMC. This signature of self-lensing can be looked for by a radial velocity survey since kinematics of the stars at the back can be markedly different from that of the majority of stars in the cold, rapidly rotating disc of the LMC. Detailed simulations of effect together with optimal strategies of carrying out the proposed survey are reported here. Assuming that the existing 30 or so alerted stars in the LMC are truely microlensed stars, their kinematics can test the two lensing scenarios; the confidence level varies with the still very uncertain structure of the LMC. Spectroscopy of the existing sample and future events requires about two or three good-seeing nights per year at a 4m-8m class southern telescope, either during the amplification phase or long after.Comment: minor changes of text, ApJ accepte

    Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw

    Get PDF
    Within low-scale seesaw mechanisms, such as the inverse and linear seesaw, one expects (i) potentially large lepton flavor violation (LFV) and (ii) sizeable non-standard neutrino interactions (NSI). We consider the interplay between the magnitude of non-unitarity effects in the lepton mixing matrix, and the constraints that follow from LFV searches in the laboratory. We find that NSI parameters can be sizeable, up to percent level in some cases, while LFV rates, such as that for \mu -> e \gamma, lie within current limits, including the recent one set by the MEG collaboration. As a result the upcoming long baseline neutrino experiments offer a window of opportunity for complementary LFV and weak universality tests.Comment: 14 pages, 14 composite figures and 1 table. v2: minor changes, references added. Accepted for publication in JHE

    Neutralino Phenomenology at LEP2 in Supersymmetry with Bilinear Breaking of R-parity

    Get PDF
    We discuss the phenomenology of the lightest neutralino in models where an effective bilinear term in the superpotential parametrizes the explicit breaking of R-parity. We consider supergravity scenarios where the lightest supersymmetric particle (LSP) is the lightest neutralino and which can be explored at LEP2. We present a detailed study of the LSP decay properties and general features of the corresponding signals expected at LEP2. We also contrast our model with gauge mediated supersymmetry breaking.Comment: 21 pages, Latex, uses axodraw.sty (included), 13 figures included as ps- and eps-files, figures slightly changed after bug-fixing, comparison with GMSB and a few references added, version to appear in NP

    Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering

    Full text link
    We explore the potential of current and next generation of coherent elastic neutrino-nucleus scattering (CEν\nuNS) experiments in probing neutrino electromagnetic interactions. On the basis of a thorough statistical analysis, we determine the sensitivities on each component of the Majorana neutrino transition magnetic moment (TMM), Λi\left \vert \Lambda_i \right \vert, that follow from low-energy neutrino-nucleus experiments. We derive the sensitivity to neutrino TMM from the first CEν\nuNS measurement by the COHERENT experiment, at the Spallation Neutron Source. We also present results for the next phases of COHERENT using HPGe, LAr and NaI[Tl] detectors and for reactor neutrino experiments such as CONUS, CONNIE, MINER, TEXONO and RED100. The role of the CP violating phases in each case is also briefly discussed. We conclude that future CEν\nuNS experiments with low-threshold capabilities can improve current TMM limits obtained from Borexino data.Comment: 25 pages, 8 figures, 2 tables, analysis updated; conclusions unchanged; references added; matches published versio

    Inverse tri-bimaximal type-III seesaw and lepton flavor violation

    Full text link
    We present a type-III version of inverse seesaw or, equivalently an inverse version of type-III seesaw. Naturally small neutrino masses arise at low-scale from the exchange of neutral fermions transforming as hyperchargeless SU(2) triplets. In order to implement tri-bimaximal lepton mixing we supplement the minimal SU(3)xSU(2)xU(1) gauge symmetry with an A4-based flavor symmetry. Our scenario induces lepton flavour violating (LFV) three body decays that can proceed at the tree level, while radiative li to lj gamma decays and mu-e conversion in nuclei are also expected to be sizeable. LFV decays are related by the underlying flavor symmetry and the new fermions are also expected to be accessible for study at the Large Hadron Collider (LHC)

    Toward in vitro fertilization in Brachiaria spp.

    Get PDF
    Brachiaria are forage grasses widely cultivated in tropical areas. In vitro pollination was applied to accessions of Brachiaria spp. by placing pollen of non-dehiscent anthers on a solid medium near isolated ovaries. Viability and in vitro germination were tested in order to establish good conditions for pollen development. Comparing sexual to apomictic plants, apomictic pollen has more abortion after meiosis during the microspore stage and a lower viability and, of both types, only some plants have sufficient germination in a high sugar concentration. Using in vitro pollination with the sexual plant, the pollen tube penetrates into the nucellus and micropyle, but the embryo sac degenerates and collapses. In the apomictic B. decumbens, in vitro pollination leads to the transfer of the sperm nuclei into the egg cell and the central cell. The results are discussed according to normal fertilization and barriers in sexual and apomictic plants
    corecore