853 research outputs found

    Experimental results for nulling the effective thermal expansion coefficient of fused silica fibres under a static stress

    Get PDF
    We have experimentally demonstrated that the effective thermal expansion coefficient of a fused silica fibre can be nulled by placing the fibre under a particular level of stress. Our technique involves heating the fibre and measuring how the fibre length changes with temperature as the stress on the fibre was systematically varied. This nulling of the effective thermal expansion coefficient should allow for the complete elimination of thermoelastic noise and is essential for allowing second generation gravitational wave detectors to reach their target sensitivity. To our knowledge this is the first time that the cancelation of the thermal expansion coefficient with stress has been experimentally observed

    Multi-scale modeling of bulk heterojunctions for organic photovoltaic applications

    Get PDF
    Originally published by InTech, available from http://www.intechopen.com/books/third-generation-photovoltaicsVaruni Dantanarayana, David M. Huang, Jennifer A. Staton, Adam J. Moulé and Roland Falle

    Exploring Spirituality in Teaching Within a Christian School Context Through Collaborative Action Research

    Get PDF
    This article reports on a collaborative action research project conducted in New Zealand, during 2012, exploring spirituality in teaching within a Christian school context. The experienced primary school teacher participant chose to take action around the issue of personal fear and insecurity which were believed to be hindering professional growth and relationships. Through self-directed inquiry, critical reflective journaling, Bible study, fellowship and prayer with trusted friends, the teacher experienced a renewed sense of peace and freedom in Christ. This personal transformation was believed to be influential on subsequent professional practice, assisting the teacher to become more relational, responsive and compassionate. The findings provide a rich description of the participant’s spirituality, the lived reality of a person’s spiritual life. This report will be of interest to teachers, teacher-leaders and teacher-educators who desire to explore Christian spirituality through practitioner-led inquiry

    Phase chaos in the anisotropic complex Ginzburg-Landau Equation

    Full text link
    Of the various interesting solutions found in the two-dimensional complex Ginzburg-Landau equation for anisotropic systems, the phase-chaotic states show particularly novel features. They exist in a broader parameter range than in the isotropic case, and often even broader than in one dimension. They typically represent the global attractor of the system. There exist two variants of phase chaos: a quasi-one dimensional and a two-dimensional solution. The transition to defect chaos is of intermittent type.Comment: 4 pages RevTeX, 5 figures, little changes in figures and references, typos removed, accepted as Rapid Commun. in Phys. Rev.

    A randomized phase 3 study of ixazomib–dexamethasone versus physician’s choice in relapsed or refractory AL amyloidosis

    Get PDF
    In the first phase 3 study in relapsed/refractory AL amyloidosis (TOURMALINE-AL1 NCT01659658), 168 patients with relapsed/refractory AL amyloidosis after 1–2 prior lines were randomized to ixazomib (4 mg, days 1, 8, 15) plus dexamethasone (20 mg, days 1, 8, 15, 22; n = 85) or physician’s choice (dexamethasone ± melphalan, cyclophosphamide, thalidomide, or lenalidomide; n = 83) in 28-day cycles until progression or toxicity. Primary endpoints were hematologic response rate and 2-year vital organ deterioration or mortality rate. Only the first primary endpoint was formally tested at this interim analysis. Best hematologic response rate was 53% with ixazomib–dexamethasone vs 51% with physician’s choice (p = 0.76). Complete response rate was 26 vs 18% (p = 0.22). Median time to vital organ deterioration or mortality was 34.8 vs 26.1 months (hazard ratio 0.53; 95% CI, 0.32–0.87; p = 0.01). Median treatment duration was 11.7 vs 5.0 months. Adverse events of clinical importance included diarrhea (34 vs 30%), rash (33 vs 20%), cardiac arrhythmias (26 vs 15%), nausea (24 vs 14%). Despite not meeting the first primary endpoint, all time-to-event data favored ixazomib–dexamethasone. These results are clinically relevant to this relapsed/refractory patient population with no approved treatment options

    The Search for Gravitational Waves

    Full text link
    Experiments aimed at searching for gravitational waves from astrophysical sources have been under development for the last 40 years, but only now are sensitivities reaching the level where there is a real possibility of detections being made within the next five years. In this article a history of detector development will be followed by a description of current detectors such as LIGO, VIRGO, GEO 600, TAMA 300, Nautilus and Auriga. Preliminary results from these detectors will be discussed and related to predicted detection rates for some types of sources. Experimental challenges for detector design are introduced and discussed in the context of detector developments for the future.Comment: 21 pages, 7 figures, accepted J. Phys. B: At. Mol. Opt. Phy

    Alliance Foundation Trial 09: A randomized, multicenter, phase 2 trial evaluating two sequences of pembrolizumab and standard platinum-based chemotherapy in patients with metastatic NSCLC

    Get PDF
    INTRODUCTION: The sequence of chemotherapy and pembrolizumab may affect antitumor immune response and efficacy of immunotherapy. METHODS: This multicenter, randomized, phase 2 trial was designed to evaluate the efficacy of two sequences of chemotherapy and pembrolizumab in patients with stage 4 NSCLC. Both arms were considered investigational, and the study used a pick a winner design. The primary end point was objective response rate by independent radiologic review after eight cycles (24 wk). Patients were randomized 1:1 to arm A (chemotherapy for four cycles followed by pembrolizumab for four cycles) or arm B (pembrolizumab for four cycles followed by chemotherapy for four cycles). Patients in both arms without disease progression after the initial eight cycles continued pembrolizumab until disease progression, unacceptable toxicity, or a maximum of 2 years. RESULTS: From March 2016 to July 2018, a total of 90 eligible patients were randomized (43 patients to arm A and 47 patients to arm B). The objective response rate at 24 weeks in arms A and B was 39.5 % (95 % confidence interval [CI]: 24.9%-54.1 %) and 40.4 % (95 % CI: 26.4%-54.5 %), respectively ( CONCLUSIONS: Additional evaluation of either sequence in a phase 3 trial is not warranted

    Global Models of Runaway Accretion in White Dwarf Debris Disks

    Full text link
    A growing sample of white dwarfs (WDs) with metal-enriched atmospheres are accompanied by excess infrared emission, indicating that they are encircled by a compact dusty disk of solid debris. Such `WD debris disks' are thought to originate from the tidal disruption of asteroids or other minor bodies, but the precise mechanism(s) responsible for transporting matter to the WD surface remains unclear, especially in those systems with the highest inferred metal accretion rates dM_Z/dt ~ 1e8-1e10 g/s. Here we present global time-dependent calculations of the coupled evolution of the gaseous and solid components of WD debris disks. Solids transported inwards (initially due to PR drag) sublimate at tens of WD radii, producing a source of gas that accretes onto the WD surface and viscously spreads outwards in radius, where it overlaps with the solid disk. If the aerodynamic coupling between the solids and gaseous disks is sufficiently strong (and/or the gas viscosity sufficiently weak), then gas builds up near the sublimation radius faster than it can viscously spread away. Since the rate of drag-induced solid accretion increases with gas density, this results in a runaway accretion process, during which the WD accretion rate reaches values orders of magnitude higher than can be achieved by PR drag alone. We explore the evolution of WD debris disks across a wide range of physical conditions and calculate the predicted distribution of observed accretion rates dM_Z/dt, finding reasonable agreement with the current sample. Although the conditions necessary for runaway accretion are at best marginally satisfied given the minimal level of aerodynamic drag between circular gaseous and solid disks, the presence of other stronger forms of solid-gas coupling---such as would result if the gaseous disk is only mildly eccentric---substantially increase the likelihood of runaway accretion.Comment: 23 pages, 20 figures, submitted to MNRA

    Testing Scalar-Tensor Gravity with Gravitational-Wave Observations of Inspiralling Compact Binaries

    Full text link
    Observations of gravitational waves from inspiralling compact binaries using laser-interferometric detectors can provide accurate measures of parameters of the source. They can also constrain alternative gravitation theories. We analyse inspiralling compact %binaries in the context of the scalar-tensor theory of Jordan, Fierz, Brans and Dicke, focussing on the effect on the inspiral of energy lost to dipole gravitational radiation, whose source is the gravitational self-binding energy of the inspiralling bodies. Using a matched-filter analysis we obtain a bound on the coupling constant ωBD\omega_{\rm BD} of Brans-Dicke theory. For a neutron-star/black-hole binary, we find that the bound could exceed the current bound of ωBD>500\omega_{\rm BD}>500 from solar-system experiments, for sufficiently low-mass systems. For a 0.7M⊙0.7 M_\odot neutron star and a 3M⊙3 M_\odot black hole we find that a bound ωBD≈2000\omega_{\rm BD} \approx 2000 is achievable. The bound decreases with increasing black-hole mass. For binaries consisting of two neutron stars, the bound is less than 500 unless the stars' masses differ by more than about 0.5M⊙0.5 M_\odot. For two black holes, the behavior of the inspiralling binary is observationally indistinguishable from its behavior in general relativity. These bounds assume reasonable neutron-star equations of state and a detector signal-to-noise ratio of 10.Comment: 10 pages, (3 figures upon request), WUGRAV-94-
    • …
    corecore