500 research outputs found

    Deterministic generation of arbitrary photonic states assisted by dissipation

    Get PDF
    A scheme to utilize atom-like emitters coupled to nanophotonic waveguides is proposed for the generation of many-body entangled states and for the reversible mapping of these states of matter to photonic states of an optical pulse in the waveguide. Our protocol makes use of decoherence-free subspaces (DFS) for the atomic emitters with coherent evolution within the DFS enforced by strong dissipative coupling to the waveguide. By switching from subradiant to superradiant states, entangled atomic states are mapped to photonic states with high fidelity. An implementation using ultracold atoms coupled to a photonic crystal waveguide is discussed.Comment: 15 pages, 4 figure

    Linear and nonlinear coupling of quantum dots in microcavities

    Full text link
    We discuss the topical and fundamental problem of strong-coupling between a quantum dot an the single mode of a microcavity. We report seminal quantitative descriptions of experimental data, both in the linear and in the nonlinear regimes, based on a theoretical model that includes pumping and quantum statistics.Comment: Proceedings of the symposium Nanostructures: Physics and Technology 2010 (http://www.ioffe.ru/NANO2010), 2 pages in proceedings styl

    Entanglement of two qubits mediated by one-dimensional plasmonic waveguides

    Get PDF
    We investigate qubit-qubit entanglement mediated by plasmons supported by one-dimensional waveguides. We explore both the situation of spontaneous formation of entanglement from an unentangled state and the emergence of driven steady-state entanglement under continuous pumping. In both cases, we show that large values for the concurrence are attainable for qubit-qubit distances larger than the operating wavelength by using plasmonic waveguides that are currently available.Comment: 4 pages, 4 figures. Minor Changes. Journal Reference added. Highlighted in Physic

    The colored Hanbury Brown--Twiss effect

    Full text link
    The Hanbury Brown--Twiss effect is one of the celebrated phenomenologies of modern physics that accommodates equally well classical (interferences of waves) and quantum (correlations between indistinguishable particles) interpretations. The effect was discovered in the late thirties with a basic observation of Hanbury Brown that radio-pulses from two distinct antennas generate signals on the oscilloscope that wiggle similarly to the naked eye. When Hanbury Brown and his mathematician colleague Twiss took the obvious step to propose bringing the effect in the optical range, they met with considerable opposition as single-photon interferences were deemed impossible. The Hanbury Brown--Twiss effect is nowadays universally accepted and, being so fundamental, embodies many subtleties of our understanding of the wave/particle dual nature of light. Thanks to a novel experimental technique, we report here a generalized version of the Hanbury Brown--Twiss effect to include the frequency of the detected light, or, from the particle point of view, the energy of the detected photons. In addition to the known tendencies of indistinguishable photons to arrive together on the detector, we find that photons of different colors present the opposite characteristic of avoiding each others. We postulate that fermions can be similarly brought to exhibit positive (boson-like) correlations by frequency filtering.Comment: 18 pages, includes supplementary material of the derivation

    Ethylene Forming Activity from ACC in Citrus Leaf Discs: Influence of Light and Darkness

    Get PDF
    The influence of light and darkness incubation on ethylene forming activity from 1-aminocyclopropane-1-carboxylic acid (ACC) in citrus (Citrus sinensis L. Osbeck cv. 'Salustiana) mature leaf discs was studied. Leaf discs incubated 48 hours inlight produced 20 times greater ethylene than in darkness. Twenty-four hours light and darkness alternative incubations were carried out. In any case, transference of discs from the light to the dark resulted in inhibition of ethylene forming activity. Effects of DCMU (3-(3,4- dichlorophenyl)-1,1-dimethylurea, inhibitor of photosynthetic electron flow) and KCN (inhibitor of cytochrome oxidase) were studied,, DCMU at 0.1 mM concentration inhibited ethylene forming activity after 48 h incubation in light at 95%.However, ethylene forming activity was not affected by DCMU in the dark. On the other hand, 1mMKCN stimulated considerably ethylene forming activity both in the light and dark. Incubation in a CO, enriched atmosphere did not affect ethylene forming activity in light. Therefore, respiratory CO, release could not be the responsible of ethylene forming activity inhibition in the dark. Increase on ethylene production in light from ACC in mature leaf discs is related with the ethylene forming enzyme (EFE) because of CO, + ion (inhibitor of EFE activity) reduced highly ethylene production from ACC both in the light and dark. Likewise mannitol (stimulator of EFE activity and ACC synthesis) enhanced ethylene production from ACC both in the light and in the dark. Cycloheximide (inhibitor of protein synthesis) also inhibited ethylene production from ACC. Therefore, enzyme synthesis could be required for the ethylene forming activity from ACC

    Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides

    Get PDF
    We study the generation of entanglement between two distant qubits mediated by the surface plasmons of a metallic waveguide. We show that a V-shaped channel milled in a flat metallic surface is much more efficient for this purpose than a metallic cylinder. The role of the misalignments of the dipole moments of the qubits, an aspect of great importance for experimental implementations, is also studied. A careful analysis of the quantum-dynamics of the system by means of a master equation shows that two-qubit entanglement generation is essentially due to the dissipative part of the effective qubit-qubit coupling provided by the surface plasmons. The influence of a coherent external pumping, needed to achieve a steady state entanglement, is discussed. Finally, we pay attention to the question of how to get information experimentally on the degree of entanglement achieved in the system.Comment: 13 pages, 12 figure

    Examination of the Feynman-Hibbs Approach in the Study of NeN_N-Coronene Clusters at Low Temperatures

    Get PDF
    Feynman-Hibbs (FH) effective potentials constitute an appealing approach for investigations of many-body systems at thermal equilibrium since they allow us to easily include quantum corrections within standard classical simulations. In this work we apply the FH formulation to the study of NeN_N-coronene clusters (N=N= 1-4, 14) in the 2-14 K temperature range. Quadratic (FH2) and quartic (FH4) contributions to the effective potentials are built upon Ne-Ne and Ne-coronene analytical potentials. In particular, a new corrected expression for the FH4 effective potential is reported. FH2 and FH4 cluster energies and structures -obtained from energy optimization through a basin-hoping algorithm as well as classical Monte Carlo simulations- are reported and compared with reference path integral Monte Carlo calculations. For temperatures T>4T> 4 K, both FH2 and FH4 potentials are able to correct the purely classical calculations in a consistent way. However, the FH approach fails at lower temperatures, especially the quartic correction. It is thus crucial to assess the range of applicability of this formulation and, in particular, to apply the FH4 potentials with great caution. A simple model of NN isotropic harmonic oscillators allows us to propose a means of estimating the cut-off temperature for the validity of the method, which is found to increase with the number of atoms adsorbed on the coronene molecule

    Fungal Cell Gigantism during Mammalian Infection

    Get PDF
    The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 µm in diameter and capsules resistant to stripping with γ-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20–50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens
    • …
    corecore