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Ricardo Pérez de Tudela

Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany

Javier Hernández-Rojas and José Bretón
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Abstract

Feynman-Hibbs (FH) effective potentials constitute an appealing approach for investigations of

many-body systems at thermal equilibrium since they allow us to easily include quantum corrections

within standard classical simulations. In this work we apply the FH formulation to the study of

NeN -coronene clusters (N = 1-4, 14) in the 2-14 K temperature range. Quadratic (FH2) and quartic

(FH4) contributions to the effective potentials are built upon Ne-Ne and Ne-coronene analytical

potentials. In particular, a new corrected expression for the FH4 effective potential is reported.

FH2 and FH4 cluster energies and structures -obtained from energy optimization through a basin-

hoping algorithm as well as classical Monte Carlo simulations- are reported and compared with

reference path integral Monte Carlo calculations. For temperatures T > 4 K, both FH2 and FH4

potentials are able to correct the purely classical calculations in a consistent way. However, the FH

approach fails at lower temperatures, especially the quartic correction. It is thus crucial to assess

the range of applicability of this formulation and, in particular, to apply the FH4 potentials with

great caution. A simple model of N isotropic harmonic oscillators allows us to propose a means of

estimating the cut-off temperature for the validity of the method, which is found to increase with

the number of atoms adsorbed on the coronene molecule.

KEYWORDS: quantum effects, Feynman-Hibbs potentials, van der Waals clusters, polycyclic

aromatic hydrocarbons
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I. INTRODUCTION

Quantum effects are very important in a variety of many-body systems at thermal equi-

librium, especially for light molecules and/or low temperatures. Among the problems of

interest, we mention the behavior of water[1], the storage of small molecules in nanoporous

materials[2–5] and the study of molecules trapped inside low temperature matrices, either

solid[6, 7] or superfluid as in the case of He nanodroplets[8, 9]. The path-integral formula-

tion of statistical mechanics[10] has provided the framework for the development of accurate

path-integral Monte Carlo (PIMC) methods[11, 12] to study these systems. However, these

methods are computationally very demanding so various approximate approaches have been

developed over the years to overcome this drawback.

One of the simplest approximations is the use of Feynman-Hibbs (FH) effective

potentials[13] in classical Monte Carlo (CMC) or molecular dynamics simulations. These

potentials are given as a temperature- and mass-dependent expansion of the intermolecular

potentials in powers of h̄. In this way, the approach provides an easy and appealing means

to include quantum corrections in a purely classical simulation. This formulation has been

applied to the study of both homogeneous[14–17] and heterogeneous systems as, for instance,

the sieving of H2 and D2 in microporous materials[5, 18–22]. In the case of homogeneous

media, the validity of this method has been investigated in detail by Sesé[23, 24] from com-

parisons with “exact” PIMC calculations of Lennard-Jones systems (He, Ne, Ar, D2, CH4).

Similarly, Calvo et al[15] found that the quadratic FH effective potential reproduces quite

well the thermodynamic properties (melting temperatures, heat capacities, caloric curves,

etc.) of Ne, Ar, and Xe rare gas clusters. More recently, Kowalczyk et al[25] assessed

the FH approach for supercritical 4He at 10 K and concluded that the FH potentials are

only suitable at low fluid densities, suggesting that previous applications to dense para-H2

in nanoporous materials at low temperatures should be revised. It is thus interesting to

investigate the validity of the FH approach for heterogeneous systems such as fluid-solid

mixtures, for which specific studies are scarcer.
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In this work we study the performance of the FH approach for NeN -coronene (N =

1− 4, 14) clusters at temperatures ranging from 2 to 14 K, by comparing CMC calculations

using FH potentials with the accurate PIMC method. This system can be considered as a

prototype for studies of van der Waals interactions between small molecules and carbona-

ceous substrates[26] and, in this way, its findings may serve as a guide for future simulations

of the storage of gases by new porous carbon materials[27]. In addition, the interaction

between coronene and other polycyclic aromatic hydrocarbons (PAHs) with Ne atoms is

interesting in connection with the spectroscopy of these molecules in Neon matrices at low

temperatures (≈ 6 K), aimed to assign some bands observed from various astrophysical

environments[7, 28–30].

The FH effective potentials used in the present work are built upon pairwise analytical

Ne-Ne and Ne-coronene potentials and are obtained both at quadratic (h̄2) and quartic (h̄4)

order, hereafter referred as FH2 and FH4 potentials, respectively. As in our recent study of

HeN -coronene clusters[31], minimum energies of the bare interaction potential are obtained

by means of a basin-hopping (BH) approach[32], and the optimized structures are then

used as seeds for the CMC and PIMC calculations. In this work, we additionally run BH

and CMC calculations with the FH2 and FH4 potentials in order to assess the extent of

improvement with respect to the use of the bare potentials.

The paper is organized as follows. Section 2 presents the FH effective potentials ap-

plied to the NeN -coronene interaction. BH, CMC and PIMC computational methods are

briefly reviewed in Section 3. Results (energies and structures at different temperatures) are

reported and discussed in Section 4. Finally, concluding remarks are given in Section 5.

II. NEN -CORONENE INTERACTION POTENTIALS

A. Bare potentials

The coronene molecule is assumed to be rigid and fixed to the reference frame. The

origin of the coordinate system is placed at the coronene center of mass, with the z axis
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being perpendicular to the molecular plane and the x axis being overimposed to two of the

C-C bonds of this molecule. The position of i−th Ne atom is given by the Cartesian vector

ri.

The total potential of the NeN -coronene system is given as a sum of pairwise interactions,

V (r1, ..., rN) =
N∑
i=1

VNe−Cor(ri) +
N∑
i<j

VNe−Ne(ρij), (1)

where VNe−Cor and VNe−Ne are the Ne-coronene and Ne-Ne interaction potentials, respectively,

and ρij = |ri − rj| is the distance between i−th and j−th Ne atoms.

The Ne-Ne potential is represented by the Improved Lennard-Jones (ILJ) formula[33]:

VNe−Ne(ρ) =
ε

m(ρ)− 6

[
6

(
ρ

ρe

)−m(ρ)

−m(ρ)

(
ρ

ρe

)−6]
, (2)

where ε is the well depth, ρe is the equilibrium distance, and

m(ρ) = γ + 4

(
ρ

ρe

)2

. (3)

Although Eq. 2 is more involved than the standard Lennard-Jones expression, the ILJ

potential gives a more realistic representation of both the size repulsion and the long-range

dispersion attraction, as discussed elsewhere[33]. Values of the parameters ε, ρe and γ have

been taken from Ref.[33] and are given in Table I.

The Ne-coronene potential is given as a sum of atom-bond pairwise contributions[34, 35],

VNe−Cor(r) =
∑
k

Uk(ρk, ck), (4)

where k runs for the number of bonds (C-C and C-H) in coronene, ρk is the distance between

the atom and the bond center and ck = cos(θk), θk being the Jacobian angle describing the

orientation of Ne relative to the bond axis. Both ρk and ck are functions of the Ne position

(r) as well as of the location and orientation of the bond k. Geometrical parameters of

coronene are as in Ref. [35]. The atom-bond pair potential Uk is represented, as in Ne-Ne,
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by an ILJ formula (Eq.2), with the special feature that the well depth and the equilibrium

distance vary with ck as[34]

ε(ck) = ε⊥ +
(
ε‖ − ε⊥

)
c2k

ρe(ck) = ρ⊥e +
(
ρ‖e − ρ⊥e

)
c2k, (5)

where ε⊥ (ε‖) and ρ⊥e (ρ
‖
e) are the well depth and equilibrium distance for the perpendicular

(parallel) orientation of the atom with respect to the bond. These parameters were initially

estimated from the polarizability of the interacting partners, and subsequently fine-tuned

from the comparison with benchmark high level ab initio calculations involving large basis

sets[35]. Their values are listed in Table I for the two types of the involved bonds, C-C and

C-H.

It is worth noting that the atom-bond additive representation takes into consideration

three-body effects since it explicitly makes use of the components of the bond polarizability

tensor and in the end it provides a good estimation of the total (coronene) molecular polar-

izability. On the other hand, the present model neglects three-body effects arising between

two rare gas atoms and a third body (either Ne or coronene), which however are expected

to be negligible for the investigated equilibrium geometries.

B. Feynman-Hibbs effective potentials

The FH effective potentials for an A-B interacting system are obtained from the following

gaussian average of the VAB potential [13, 23]

V FH
AB (r) =

(
6µ

πh̄2β

)3/2 ∫
du VAB(r + u) exp

(
− 6µ

βh̄2
u2
)
, (6)

where r is the vector joining A and B, µ is the A-B reduced mass, and β = 1/kBT , kB

being the Boltzmann constant. Eq.6 is based on a variational treatment of the path-integral

and involves the neglect of exchange effects[23]. Closed expressions of the FH potential
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are obtained upon a Taylor expansion of VAB(r + u) around the vector r in powers of the

Cartesian components of u and solving the corresponding integrals of Eq.6. We have[24]

V
FH(2p)
AB (r) =

p∑
n=0

1

n!

(
βh̄2

24µ

)n
∇2n [VAB(r)] , (7)

where ∇0 = 1 and p = 0, 1, 2 correspond to the bare, quadratic (FH2) and quartic (FH4)

potentials, respectively. Note that the integral of Eq. 6 vanishes for the contributions

involving odd powers of the components of u. It can be seen that at high temperatures the

effective potentials tend to the bare potential and the classical regime is correctly recovered.

However, as temperature tends to zero these potentials become unphysically high, which

will inevitably impose limits to the model.

In the case of the Ne-Ne interaction, VAB(r) depends on |r| ≡ ρ and the FH2 potential

becomes

V FH2
Ne−Ne(ρ) = VNe−Ne(ρ) +

h̄2β

24µ

(
V ′′Ne−Ne(ρ) +

2

ρ
V ′Ne−Ne(ρ)

)
, (8)

where VNe−Ne is the potential of Eq.2 and V ′Ne−Ne and V ′′Ne−Ne are their first and second

derivatives, respectively, with respect to ρ.

The quartic Ne-Ne effective potential (FH4) writes

V FH4
Ne−Ne(ρ) = V FH2

Ne−Ne +
1

2

(
h̄2β

24µ

)2(
V ′′′′Ne−Ne(ρ) +

4

ρ
V ′′′Ne−Ne(ρ)

)
, (9)

where, analogously, V ′′′Ne−Ne and V ′′′′Ne−Ne are the third and fourth derivatives of VNe−Ne with

respect to ρ.

It is worth pointing our that Eq. 9 differs from previously published expressions[18, 19,

21, 25], which we believe are incorrect. More details are provided in the Appendix.

The form of the Ne-coronene FH2 potential is more complicated because the atom-bond

potentials Uk of Eq.4 depend both on the distance to the bond center ρk and the cosine of

the Jacobian angle, ck. The result is
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V FH2
Ne−Cor(r) = VNe−Cor(r)

+
h̄2β

24mNe

∑
k

{
∂2Uk
∂ρ2k

+
2

ρk

∂Uk
∂ρk

+
(1− c2k)
ρ2k

∂2Uk
∂c2k

− 2ck
ρ2k

∂Uk
∂ck

}
. (10)

Note that in Eq.10 the Ne mass is written instead of the reduced mass of Ne-coronene. We

have made this choice because the coronene molecule is fixed to the reference frame and it

is thus assumed that it has an infinite mass.

We have found that the contribution to V FH2
Ne−Cor due to the derivatives of Uk with respect

to ck are very small. To simplify the calculations, we have assumed that the contributions

from these derivatives to the terms of h̄4 order are negligible. In this way, the FH4 potential

is written as

V FH4
Ne−Cor(r) = V FH2

Ne−Cor(r) +
1

2

(
h̄2β

24mNe

)2∑
k

{
∂4Uk
∂ρ4k

+
4

ρk

∂3Uk
∂ρ3k

}
. (11)

Nevertheless, the exact expression for the correction of h̄4 order is given in Eq. 25, and it

has been additionally checked that the contribution to that equation of the derivatives of

the atom-bond potential with respect to ck is negligible.

More details about the derivation of Eqs. 8-11 are provided in the Appendix. All the

required derivatives of the ILJ functions were obtained analytically as well as the gradients

of the potentials of Eqs.8-11 (needed for the application of the BH algorithm referred be-

low). In any case, recent advances in techniques of automatic differentiation[36] might prove

advantageous for this kind of simulations.

The Ne-Ne bare potential as well as the FH2 and FH4 ones at 6 K are presented in Fig. 1.

The ILJ form of the bare potential is very realistic, as we have compared it with the Tang-

Toennies potential[37] and found that both potentials would appear as indistinguishable in

Fig. 1. Indeed, the well depth and equilibrium distance of the Tang-Toennies potential are

3.646 meV and 3.090 Å, very close to the values of Table I. On the other hand, it can be

seen in Fig. 1 that the FH corrections significantly modify the bare potential, the effective
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potentials being more “repulsive”: the equilibrium distance changes from 3.09 to 3.24 (3.28)

Å and the well depth, from 3.66 to 3.03 (2.84) meV, as one goes from the bare to the FH2

(FH4) potentials, respectively.

The corresponding potentials for Ne-coronene are shown in Fig.2 as functions of the y

coordinate, while z and x are fixed at the absolute minimum of the classical potential (at

3.21 and 0 Å, respectively). Again, it can be seen that the effect of the quadratic correction

is non negligible, for instance, the minimum energy moves from -27.83 (bare potential) to

-25.68 meV (FH2 potential) but, on the other hand, the FH4 potential is very close to the

FH2 one.

III. CLASSICAL AND QUANTUM-MECHANICAL CALCULATIONS

A. General procedure and notation

In this work we compare the performance of the NeN -coronene FH2 and FH4 effective

potentials with that of the bare interaction potentials. First, we will study the equilibrium

geometries of these clusters by means of the BH approach. The corresponding calculations

are denoted by BH, BH-FH2 and BH-FH4 for the bare, FH2 and FH4 potentials, respectively.

Note that, while the BH calculations are independent of the temperature, BH-FH2 and BH-

FH4 must be repeated for the different temperatures of the study. The BH equilibrium

geometries are used as initial configurations of the CMC calculations at each temperature,

which will be denoted as CMC, CMC-FH2 and CMC-FH4, for the bare, FH2 and FH4

potentials, respectively. The resulting energies and configurations are compared with the

PIMC calculations, where just the bare interaction potential is employed.

For the BH calculations using the bare interaction potential, the zero point energy (ZPE)

was also computed within the harmonic approximation and added to the BH equilibrium

energies (details can be found in Ref.[31]). This is a convenient estimation of the quantum

effects of the system when the thermal effects become small, as will be discussed in Section

IV. These calculations are denoted by BH+ZPE.
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B. BH minimization

Likely candidates for the global potential energy minima of NeN -coronene clusters were

located using the BH scheme [32], which is also known as the “Monte Carlo plus energy

minimization” approach of Li and Scheraga [38]. This method transforms the potential

energy surface into a collection of basins and explore them by hopping between local minima.

This technique has been used successfully for both neutral [32, 39, 40] and charged atomic

and molecular clusters [41–46], along with many other applications.[47] In the size range

considered here the global optimization problem is feasible at a reasonable computational

cost. A total of 5 runs of 5 × 104 BH steps each were performed for all clusters sizes.

The global minimum was generally found in fewer than 104 BH steps. The optimization

temperature was chosen between 8 and 10 K.

C. PIMC and CMC calculations

Details of the PIMC method employed here can be found in our study on HeN -coronene

clusters [31] and in previous literature[11, 48–51]. The basic assumption involves express-

ing the density matrix at a temperature T as a product of M density matrices at higher

temperatures MT :

ρ(R0,RM ; β) =

∫
dR1. . . dRM−1

M−1∏
α=0

ρ(Rα,Rα+1; η), (12)

where η = β/M . Rα is the vector which collects the 3N positions of the N Ne atoms:

Rα ≡ {rα1 , . . . , rαN}, being rαi the position vector of the i−th Ne atom at the time slice or

imaginary time α. The total Hamiltonian Ĥ of the system with the coronene molecule fixed

to the origin of coordinates can be written as:

Ĥ = − h̄2

2mNe

N∑
i=1

∇2
i + V (R). (13)

where V is the interaction potential of Eq.1.
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The internal energy is obtained by means of the virial estimator [52, 53] as:

〈E(T )〉 =
3N

2β
−

〈
1

2M

M−1∑
α=0

N∑
i=1

(rαi −rCi ) · Fα
i −

1

M

M−1∑
α=0

V (Rα)

〉
. (14)

where rCi = M−1∑M−1
α=0 rαi is the centroid of the ith particle and Fα

i is the force experienced

by the i particle on the α slice. The integration is carried out via a Metropolis Monte Carlo

algorithm, as an average over a number of paths {R1,R2, . . . ,RM ,RM+1} sampled according

to a probability density proportional to the factorized product of M density matrices of

Eq.12. Exchange effects are neglected. The number of beads vary between M= 1 (for

the CMC, CMC-FH2 and CMC-FH4 calculations) to a maximum of 150 for the lowest

temperature PIMC simulations. Depending on M , the number of steps varies between 105

to 107. The staging sampling method has been employed[54] involving a number of eight

beads in each movement for the PIMC simulations. The final average energy is obtained by

extrapolation to the M →∞ following a parabolic law[55, 56].

IV. RESULTS AND DISCUSSION

A. Cluster energies and structures at 6 K

Before tackling the study of the FH approximation as a function of the temperature, we

start presenting results at 6 K, an intermediate value in the range addressed here and in

coincidence with the temperature of various experiments on PAHs isolated in Ne matrices[7,

29, 30].

In Table II, energies of various NeN -coronene clusters, N=1-4 and 14, at 6 K as obtained

from the BH and CMC approaches and using the bare, FH2 and FH4 effective potentials

are reported and compared with the PIMC results. Various arrangements (or “isomers”)

(na, nb) are examined for each number of Ne atoms, where na and nb refer to the number

of atoms placed above and below the coronene plane, respectively. It can be seen that both

the BH and the CMC energies tend to the PIMC energies as one goes from using the bare to
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the FH2 and FH4 potentials. However, given the difference between the BH and the CMC

energies, it is clear that thermal effects are non negligible at this temperature so, among all

the calculations, the CMC-FH4 energies are the ones giving the closest agreement with the

reference PIMC results. In addition, notice that CMC-FH4 agrees with PIMC as to which

is the most stable isomer (na, nb) for a given cluster size N . For example, for N = 4, the

most stable arrangement within the FH4 potential is the (3,1) one, in agreement with the

PIMC calculation, whereas (4,0) gives the absolute minimum when using the bare and FH2

potentials. This result can be explained by a more repulsive character of Ne-Ne interaction

when it is considered at the FH4 level (Fig.1), thus making an arrangement with a larger

density of Ne atoms relatively less stable (as the (4,0) one).

Also from Table II, it is worth mentioning that the addition of the ZPE to the BH energies

gives a fair agreement with the PIMC energies, and that the BH+ZPE calculations correctly

predict the relative stability of the different isomers for a given N .

Computation of the energies per atom helps us to quantify the performance of the FH

approach. Results are depicted in Fig.3, where it is clear the improvement of the CMC-

FH energies with respect to the CMC ones. In more detail, note that, for a given N ,

the differences between the CMC and PIMC energies are larger for those clusters having

a larger number of atoms on a given side of the molecule. In this case, quantum effects

increase because the number of effective Ne-Ne interactions increases as well (interactions

between atoms sitting on different sides of the molecule are negligible). For example, for

(3,0), with three effective Ne-Ne interactions, the relative error of the CMC calculation is 14

%, whereas for the (2,1) cluster, with just one Ne-Ne interaction, the error reduces to 11 %.

The FH2 and FH4 potentials certainly amend the classical result, although the errors are also

larger when the number of interacting atoms increase. Indeed, the errors of the CMC-FH2

calculation are 5 % and 2 % for the (3,0) and (2,1) clusters, respectively. It is important

to mention that both Ne-Ne and Ne-coronene interactions contribute significantly to the

quantum corrections: for the (3,0) cluster, 24 % and 76 % of the FH2 correction (computed

at the corresponding optimal geometry) are due to Ne-Ne and Ne-coronene, respectively,
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whereas these numbers become 12 % and 88% in the case of the (2,1) arrangement.

Besides increasing the overall energies, there are some changes in the geometries of the

NeN -coronene clusters when the interaction potentials are modified. Probability densities as

functions of the coordinates parallel to the coronene plane, D(x, y), as obtained from PIMC,

CMC-FH4 and CMC, are shown in Fig.4 for (7,7) Ne14-coronene at 6 K (results for the FH2

potential are not shown as they are quite close to the FH4 ones). These plots have been

obtained by means of a histogramming procedure on the x and y coordinates, accumulating

the probability density along the z coordinate. For each side of the molecule, one Ne atom

is placed above the central hollow, while the other six atoms are located near the borders

of the outer hexagons. The distributions from the different calculations are quite similar.

However, it can be noticed that the peaks of the PIMC and CMC-FH4 probability densities

are somewhat wider and that the average distance between those peaks is slightly larger

than in the case of the CMC calculation. These features can be further examined by means

of the one-dimensional distribution D
(
[x2 + y2]1/2

)
as shown in Fig.5 (it is computed by

accumulating the probability density D(x, y) along the angle ϕ given by tanϕ = y/x). The

CMC-FH4 distribution is in better agreement with the PIMC calculations than the purely

classical one. Fig.5 also depicts the distance of the outer Ne atoms with respect to the

coronene symmetry axis (z) as obtained from the BH and BH-FH4 optimized geometries,

and it can be seen that these positions coincide with the maxima of the corresponding

CMC distributions. The FH4 potential involves larger equilibrium distances than the bare

potential (for instance, see Fig. 1), a feature that can explain the shift in the peak position

of the CMC-FH4 with respect to the CMC one. The peak of the PIMC distribution is in

the middle, suggesting that the FH4 potential is overestimating this effect.

B. Temperature dependence of the cluster energies

Further insight is gained into the FH approach by studying the cluster energies as func-

tions of the temperature for the different cluster sizes. In Fig.6, the behavior of the (1-4,
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0) and (7,7) cluster energies as obtained from the different potentials and methods is tested

against PIMC in the temperature range 2-14 K. To make a more coherent comparison, the

energies have been shifted by the minimum energy (BH) and divided by the number of

atoms,

Ẽ(T ) =
E(T )− EBH

N
. (15)

Although not all of the (na=1-4,0) arrangements correspond to the absolute minimum energy

(see Table II), we have chosen this sequence in order to study the FH approach as a function

of the number of Ne atoms over a given face of the molecule.

In the higher temperature range of Fig. 6 (T > 6 K) the three CMC calculations give

a monotonous increase of the cluster energies with the temperature, in agreement with the

behavior of the PIMC energies. In this region, the CMC-FH2 method considerably improves

the cluster energies with respect to the CMC calculations, while the CMC-FH4 calculation

just adds a small correction to the CMC-FH2 results. This is illustrated in Table III, where

the relative errors of the three CMC calculations are listed at T = 10 K. Note that “un-

shifted” energies were taken for the calculation of the relative errors (i.e., E instead of Ẽ).

Note that the CMC errors rise with the number of Ne atoms, as already discussed above.

It can also be seen from the Table that the CMC-FH2 and CMC-FH4 calculations roughly

halve the CMC errors independently of the number of Ne atoms. Therefore, although the

FH2 and FH4 potentials do not provide a perfect agreement with the PIMC energies, they

do introduce quantum corrections in a steady way.

As temperature decreases (T <∼ 6 K), quantum effects become dominant over the thermal

ones and a different behavior of the methods is evident. On the one hand, the slope of

the PIMC energies is modified to reach a horizontal asymptote given by the ZPE of the

system. The CMC energies, on the other hand, tend (linearly) to zero, deviating considerably

from the quantum calculation. Finally, the CMC-FH2 and CMC-FH4 energies reach a

minimum at about 6 K and rapidly increase as temperature decreases, also in contrast with

14



the correct behavior given by PIMC. In this way, the effective potentials are not adequate

for temperatures below <∼ 4 K.

The functional dependence of the CMC-FH2 (CMC-FH4) energies with the temperature

can be easily understood as soon as it is realized that they are almost equal to the sum

of the BH-FH2 (BH-FH4) and the CMC energies, which account for quantum and thermal

effects, respectively. In other words, in the present system, the behavior of the CMC-FH2

(CMC-FH4) energies is identical to that of CMC except for the (temperature-dependent)

modification of the local minimum energy due to the effective FH2 (FH4) potentials.

It is also worthwhile to note that the slope of all the CMC curves of Fig. 6 is roughly 3 kB,

in agreement with a model of N classical harmonic oscillators in a three-dimensional (3D)

space. In addition, the PIMC energies at low temperatures are in a fairly good agreement

with the ZPE computed here within the harmonic approximation (dotted lines in Fig. 6).

In this way, we have tested a model of N 3D isotropic harmonic oscillators against present

calculations. It is assumed that each of the N Ne atoms moves under an effective potential

Vhar(r) = mNeωNr
2/2, where ωN is a characteristic frequency which varies with N . Its

value is obtained from equating the computed ZPE per atom to 3h̄ωN/2. In this way, the

“average interaction” undergone by each atom -which depends on the interaction with both

the molecular substrate and the remaining atoms in the cluster- is approximated by an

isotropic harmonic potential. Within this model, the quantum mechanical average energy

per atom is [57]

Ẽq
har(T ) =

3

2
h̄ωN coth

h̄ωN
2kBT

, (16)

to be compared with the PIMC energy. Applying Eq. 7 to the harmonic potential Vhar, the

FH2 potential is

ẼBH−FH2
har (T ) =

1

8

(h̄ωN)2

kBT
, (17)

which will be associated with the BH-FH2 energy. Note that the FH4 potential is identical

to the FH2 one within the present harmonic approximation. The FH2 thermal energy per
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atom is obtained by adding 3kBT ,

ẼCMC−FH2
har (T ) = ẼBH−FH2

har (T ) + 3kBT, (18)

which will be related to the CMC-FH2 energies. Results are shown in Fig. 7 for the (2,0)

and (4,0) clusters. Although anisotropy and anharmonicity effects should probably be added

to attain a more quantitative agreement, the model energies compare fairly well with the

computed ones and, in this way, this simple model does provide an adequate zero-order

description of the behavior of these clusters.

C. Applicability of the FH2 and FH4 effective potentials

The results of Fig. 6 indicate that both FH2 and FH4 potentials are useful for T > 4 K.

It is evident, however, that below this temperature the CMC energies computed with these

potentials deviate considerably from the reference PIMC behavior, and that this effect is

more pronounced for the quartic (FH4) potential. This is in accord with the indication of

Ref. [16] that the FH2 approximation is valid whenever the next term in the expansion (the

quartic one) remains much smaller than the quadratic term. In a more detailed study of Ne

and 4He Lennard-Jones systems, Sesé[24] found that the FH2 potential generally performs

better than the FH4 one. In this work, we have found that the FH4 potential is useful just

in a narrow range of temperatures (around 6 K), since at larger temperatures its corrections

become negligible whereas at lower temperatures it worsens the FH2 estimations.

It is thus important to determine the temperature range of validity of these effective

potentials as they can lead to erroneous results when applied below a critical temperature

T ?. Sesé has found that, for relatively low densities, this temperature can be deduced from

the condition λB/σ < 0.5, where λB = h̄
√

2π/mkBT ? is the thermal de Broglie wavelength

and σ is the Lennard-Jones collision diameter. Here, taking σ= 2.76 Å (the diameter of the

Ne-Ne ILJ potential), we obtain T ? ≈ 8 K. This is a somewhat strict condition in view of

the specific results of this work.
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Based in the model of isotropic harmonic oscillators described above, we have found a

simple means of estimating the critical temperature T ? that might be extrapolated to related

systems where PIMC calculations would become too time-consuming. This temperature

is defined as the crossing between the approximate (ẼCMC−FH2
har ) and the quantum (Ẽq

har)

energies. Given that at low temperatures Ẽq
har(T ) ≈ 3

2
h̄ωN , the ZPE per atom of the

system, a simple quadratic equation follows, whose lowest root is

T ? =
3

2
h̄ωN

(
1−

√
1/3

6 kB

)
. (19)

The resulting temperatures range from T ? = 2.8 to 4.8 K as we go from the (1,0) to the

(7,7) cluster, respectively. It is worth noting that this model correctly takes into account the

shift of T ? with the number of rare gas atoms (density), as found for other systems[23, 25].

Indeed, T ? is proportional to the ZPE per atom, which increases with the number of Ne

atoms, as can be seen in Fig. 6. This trend is possibly due to a rise of the frequencies of the

average interaction undergone by each Ne atom as the number of rare gas atoms surrounding

it increases.

V. CONCLUDING REMARKS

The Feynman-Hibbs (FH) approach has been applied to the study of NeN -coronene clus-

ters (N = 1-4, 14) at low temperatures (T = 2-14 K) and using realistic analytical potentials.

The suitability of the quadratic (FH2) and quartic (FH4) effective potentials has been in-

vestigated by comparing basin-hoping (BH) optimizations and classical Monte Carlo (CMC)

calculations of cluster energies and structures with benchmark path-integral Monte Carlo

(PIMC) calculations.

For T > 4 K it is found that, although there is not a perfect agreement with the PIMC

calculations, the effective potentials significantly improve the purely classical calculations.

Quantum effects -which are significant and due to both Ne-Ne and Ne-coronene interactions-

are partially corrected by the FH potentials in a reliable way. In particular, the FH4 ap-
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proach at 6 K correctly predicts the most stable structure over a set of energetically close

local minima, and tends to emulate the PIMC probability distributions (although these

distributions do not vary as much as the energies).

For lower temperatures T <∼ 4 K, where zero-point energy (ZPE) effects dominate over

thermal ones, the FH formulation fails to reproduce the dependence of the PIMC energies

with the temperature, while the BH+ZPE approximation does reproduce well the PIMC

results. In particular, the FH4 potential, which generally improves the results of the FH2

potentials at higher temperatures, deviates more dramatically from the correct results than

the FH2 approach. Therefore, the quartic effective potential, which has been recently em-

ployed in simulations of the diffusion of light molecules in nanoporous materials[18, 21, 22],

should be applied with extreme caution.

We believe that further investigations of the performance of these effective potentials

are worthwhile as they allow us to include quantum effects (i.e., ZPE effects) into classical

simulations in a straightforward manner. For instance, it would be interesting to explore

in detail the performance of these potentials for dynamical processes -such as the transmis-

sion of atoms through nanoporous membranes[58]- using Path Integral Molecular Dynamics

approaches as benchmark quantum simulations.

VI. APPENDIX: DERIVATION OF THE FEYNMAN-HIBBS EFFECTIVE PO-

TENTIALS

In this paragraph we give a more detailed account of the derivation of the quadratic (FH2)

and quartic (FH4) effective potentials for the interaction potentials of this study (Eqs. 8-11).

Since these potentials are of the type V (ρ) or V (ρ, cos θ), it is convenient to consider the

operators of Eq.7 in spherical coordinates. In particular, the Laplacian is given, in terms of

r ≡ (r, cos θ, φ), as

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
(1− c2) ∂

2

∂c2
− 2c

∂

∂c
+

1

(1− c2)
∂2

∂φ2

)
, (20)
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where c = cos θ.

To apply Eq.7, we use the property of invariance of the Laplacian operator under any

translation or rotation in the three-dimensional space. In the case of the Ne-Ne interaction,

the origin of the coordinate system is displaced to coincide with one of the atoms, and, since

VNe−Ne only depends on the radial distance ρ,

∇2VNe−Ne =
d2VNe−Ne

dρ2
+

2

ρ

dVNe−Ne

dρ
, (21)

leading to the FH2 correction of Eq.8.

For the Ne-coronene interaction, taking into account Eq. 4

∇2VNe−Cor(r) =
∑
k

∇2Uk(ρk, ck). (22)

For every bond k, ∇2Uk can be easily performed after a transformation from the original

Cartesian system to a new one where the origin is at the bond center and the z axis is

aligned with the bond axis. In this way, ρk and ck coincide with the radial distance and the

cosine of the polar angle of the new reference system and, taking into account Eq.20 and

the independence of the potential with respect to the azimuthal angle,

∇2Uk =
∂2Uk
∂ρ2k

+
2

ρk

∂Uk
∂ρk

+
1

ρ2k

(
(1− c2k)

∂2Uk
∂c2k

− 2ck
∂Uk
∂ck

)
, (23)

which can be readily related to Eq. 10.

To obtain the FH4 potential of the Ne-Ne interaction, the ∇4 operator from Eq. 7 is

applied to VNe−Ne as

∇4VNe−Ne =

(
d2

dρ2
+

2

ρ

d

dρ

)(
d2VNe−Ne

dρ2
+

2

ρ

dVNe−Ne

dρ

)
=

d4VNe−Ne

dρ4
+

4

ρ

d3VNe−Ne

dρ3
, (24)
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an expression which can be immediately identified with the FH4 corrections of Eq.9.

At this point, it is worthwhile noting that other authors[18, 19, 21, 25] have reported an

extra term, especifically 15
ρ3
dV
dρ

, in the formal expressions of the FH4 potentials (Eq. 2 of Ref.

[18] for example). We have checked that the contributions depending on other derivatives

of the potential out of the third and fourth derivatives are canceled out in the calculation

of ∇4V , and therefore, that the correct FH4 potential expression is that given by Eq. 9 of

this work.

Finally, the ∇4 operator applied to the atom-bond potential Uk(ρk, ck) is

∇4Uk =
∂4Uk
∂ρ4k

+
4

ρk

∂3Vk
∂ρ3k

+
2

ρ2k

[
(1− c2k)

∂4Uk
∂ρ2k∂c

2
k

− 2ck
∂3Uk
∂ρ2k∂ck

]
+

1

ρ4k

[
(1− c2k)2

∂4Uk
∂c4k

− 8ck(1− c2k)
∂3Uk
∂c3k

− 4(1− 3c2k)
∂2Uk
∂c2k

]
. (25)

Eq. 11 is readily obtained once all the derivatives with respect ck are neglected, as already

discussed elsewhere.
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[31] R. Rodŕıguez-Cantano, R. P. de Tudela, M. Bartolomei, M. I. Hernández, J. Campos-Mart́ınez,
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FIG. 1: Bare Ne-Ne interaction potential (meV) as a function of the interatomic distance (in Å),

compared with the quadratic and quartic Feynman-Hibbs effective potentials at 6 K.
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FIG. 2: Ne-coronene (Bare, FH2 and FH4 at 6K) interaction potentials (in meV), as functions of

the y Cartesian coordinate (depicted in the inset), where the x and z coordinates are fixed at the

absolute minimum of the bare potential (0. and 3.21 Å, respectively).
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FH2, CMC-FH4 and PIMC, for the different sizes N and isomers (na, nb) (in ordinates).
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FIG. 4: Probability densities D(x, y) of (7,7) Ne14-coronene at 6 K. Left, middle and right panels:

PIMC, CMC-FH4 and CMC calculations, respectively.
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FIG. 5: Normalized probability density D
(
[x2 + y2]1/2

)
of (7,7) Ne14-coronene at 6 K, for CMC,

CMC-FH4 and PIMC calculations. In addition, the distance of the outer Ne atoms to the coronene

symmetry axis (z), as obtained from the BH and BH-FH4 calculations, are depicted by arrows.
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FIG. 6: Energies per atom, shifted as in Eq.15, of NeN -coronene clusters as functions of temperature

for the different methods used in this work. Insets depict the classical optimal geometries of the

clusters. (1,0), (2,0), (3,0), (4,0) and (7,7) are shown in the left upper, middle upper, right upper,

left lower and middle lower panels, respectively. Calculations have been performed at 2, 4, 6, 10,

and 14 K (lines are guides to the eye). See text for discussion.
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bols) and the corresponding energies obtained with a model of N harmonic oscillators (solid lines).

Upper and lower panels: (2,0) and (4,0) clusters, respectively. See text for details.

31



Tables

32



TABLE I: Parameters of the Ne-Ne, Ne-CC and Ne-CH pair potentials[33, 35]. Distances are in

Å, energies in meV, and γ is dimensionless.

Pair ρe ε γ

Ne-Ne 3.094 3.660 9.0

ρ⊥e ρ
‖
e ε⊥ ε‖ γ

Ne-CC 1.297 1.809 3.643 3.995 8.5

Ne-CH 2.544 1.782 3.316 3.655 9.0

33



TABLE II: NeN -coronene energies (in meV) at 6 K for the different calculations of this work

(see text for details). Various isomers (na, nb) are studied, where na (nb) is the number of Ne

atoms above (below) the coronene plane. PIMC error bars (in meV), associated to the M → ∞

extrapolation procedure, are given in parenthesis. Standard deviation of the CMC energies (not

shown) is about 0.01 meV. For a given N , the absolute minimum energy within each method is

shown in boldface.

N (na, nb) BH BH+ZPE BH-FH2 BH-FH4 CMC CMC-FH2 CMC-FH4 PIMC

1 (1,0) -27.83 -24.35 -26.04 -25.80 -25.99 -24.19 -23.95 -23.89 (0.01)

2 (1,1) -55.72 -48.75 -52.12 -51.65 -52.04 -48.44 -47.96 -47.85 (0.10)

(2,0) -55.36 -47.26 -51.13 -50.44 -52.20 -48.10 -47.42 -46.72 (0.03)

3 (3,0) -87.42 -73.85 -80.51 -79.23 -82.44 -75.49 -74.20 -72.10 (0.01)

(2,1) -83.28 -71.69 -77.25 -76.32 -78.28 -72.36 -71.44 -70.62 (0.01)

4 (4,0) -117.29 -97.03 -106.68 -104.58 -110.50 -99.97 -97.88 -94.81 (0.10)

(3,1) -115.38 -98.32 -106.66 -105.14 -108.60 -99.80 -98.28 -96.04 (0.20)

(2,2) -110.90 -94.66 -102.41 -101.01 -104.54 -96.34 -94.96 -93.50 (0.20)

14 (7,7) -415.15 -332.53 -369.99 -360.34 -392.46 -346.83 -336.94 -322.44 (0.02)

34



TABLE III: Relative errors (in %) of the CMC energies with respect to the PIMC ones (| ECMC−

EPIMC | /EPIMC) as obtained from the different potentials and clusters (na, nb).

T (K) Potential (1,0) (2,0) (3,0) (4,0) (7,7)

Bare 7 10 12 14 20

10 FH2 2 4 6 7 10

FH4 2 4 5 6 8
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