1,001 research outputs found

    Analytical and numerical seismic assessment of heritage masonry towers

    Get PDF
    Abstract The new Italian building code, published in 2018 [MIT in NTC 2018: D.M. del Ministero delle Infrastrutture e dei trasporti del 17/01/2018. Aggiornamento delle Norme Tecniche per le Costruzioni (in Italian), 2018], explicitly refers to the Italian “Guidelines for the assessment and mitigation of the seismic risk of the cultural heritage” [PCM in DPCM 2011: Direttiva del Presidente del Consiglio dei Ministri per valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle norme tecniche per le costruzioni, G.U. n. 47 (in Italian), 2011] as a reliable source of guidance that can be employed for the vulnerability assessment of heritage buildings under seismic loads. According to these guidelines, three evaluation levels are introduced to analyse and assess the seismic capacity of historic masonry structures, namely: (1) simplified global static analyses; (2) kinematic analyses based on local collapse mechanisms, (3) detailed global analyses. Because of the complexity and the large variety of existing masonry typologies, which makes it particularly problematic to adopt a unique procedure for all existing structures, the guidelines provide different simplified analysis approaches for different structural configurations, e.g. churches, palaces, towers. Among the existing typologies of masonry structures there considered, this work aims to deepen validity, effectiveness and scope of application of the Italian guidelines with respect to heritage masonry towers. The three evaluation levels proposed by the guidelines are here compared by discussing the seismic risk assessment of a representative masonry tower: the Cugnanesi tower located in San Gimignano (Italy). The results show that global failure modes due to local stress concentrations cannot be identified if only simplified static and kinematic analyses are performed. Detailed global analyses are in fact generally needed for a reliable prediction of the seismic performance of such structures.</jats:p

    Unconventional Metallic Magnetism in LaCrSb{3}

    Get PDF
    Neutron-diffraction measurements in LaCrSb{3} show a coexistence of ferromagnetic and antiferromagnetic sublattices below Tc=126 K, with ordered moments of 1.65(4) and 0.49(4) Bohr magnetons per formula unit, respectively (T=10 K), and a spin reorientation transition at ~95 K. No clear peak or step was observed in the specific heat at Tc. Coexisting localized and itinerant spins are suggested.Comment: PRL, in pres

    Analytical and numerical seismic assessment of heritage masonry towers

    Get PDF

    Proximity-induced ferromagnetism and chemical reactivity in few-layer VSe2 heterostructures

    Get PDF
    Among transition-metal dichalcogenides, mono and few-layers thick VSe2 has gained much recent attention following claims of intrinsic room-temperature ferromagnetism in this system, which have nonetheless proved controversial. Here, we address the magnetic and chemical properties of Fe/VSe2 heterostructure by combining element sensitive x-ray absorption spectroscopy and photoemission spectroscopy. Our x-ray magnetic circular dichroism results confirm recent findings that both native mono/few-layer and bulk VSe2 do not show intrinsic ferromagnetic ordering. Nonetheless, we find that ferromagnetism can be induced, even at room temperature, after coupling with a Fe thin film layer, with antiparallel alignment of the moment on the V with respect to Fe. We further consider the chemical reactivity at the Fe/VSe2 interface and its relation with interfacial magnetic coupling

    K-edge X-ray absorption spectra in transition metal oxides beyond the single particle approximation: shake-up many body effects

    Get PDF
    The near edge structure (XANES) in K-edge X-ray absorption spectroscopy (XAS) is a widely used tool for studying electronic and local structure in materials. The precise interpretation of these spectra with the help of calculations is hence of prime importance, especially for the study of correlated materials which have a complicated electronic structure per se. The single particle approach, for example, has generally limited itself to the dominant dipolar cross-section. It has long been known however that effects beyond this approach should be taken into account, both due to the inadequacy of such calculations when compared to experiment and the presence of shake-up many-body satellites in core-level photoemission spectra of correlated materials. This effect should manifest itself in XANES spectra and the question is firstly how to account for it theoretically and secondly how to verify it experimentally. By using state-of-the-art first principles electronic structure calculations and 1s photoemission measurements we demonstrate that shake-up many-body effects are present in K-edge XAS dipolar spectra of NiO, CoO and CuO at all energy scales. We show that shake-up effects can be included in K-edge XAS spectra in a simple way by convoluting the single-particle first-principles calculations including core-hole effects with the 1s photoemission spectra. We thus describe all features appearing in the XAS dipolar cross-section of NiO and CoO and obtain a dramatic improvement with respect to the single-particle calculation in CuO. These materials being prototype correlated magnetic oxides, our work points to the presence of shake-up effects in K-edge XANES of most correlated transition metal compounds and shows how to account for them, paving the way to a precise understanding of their electronic structure.Comment: 6 pages, 4 picture

    A-PHOT: a new, versatile code for precision aperture photometry

    Get PDF
    We present A-PHOT, a new publicly available code for performing aperture photometry on astronomical images, that is particularly well suited for multi-band extragalactic surveys. A-PHOT estimates the fluxes emitted by astronomical objects within a chosen set of circular or elliptical apertures. Unlike other widely used codes, it runs on predefined lists of positions, allowing for repeated measurements on the same list of objects on different images. This can be very useful when forced photometric measurement on a given position is needed. A-PHOT can also estimate morphological parameters and a local background flux, and compute on-the-fly individual optimized elliptical apertures, in which the signal-to-noise ratio is maximized. We check the performance of A-PHOT on both synthetic and real test datasets: we explore a simulated case of a space-based high-resolution imaging dataset, investigating the input parameter space to optimize the accuracy of the performance, and we exploit the CANDELS GOODS-South data to compare the A-PHOT measurements with those from the survey legacy catalogs, finding good agreement overall. A-PHOT proves to a useful and versatile tool for quickly extracting robust and accurate photometric measurements and basic morphological information of galaxies and stars, with the advantage of allowing for various measurements of fluxes at any chosen position without the need of a full detection run, and for determining the basic morphological features of the sources.Comment: 10 pages, 9 figure

    Low Temperature Solution-Phase Deposition of SnS Thin Films

    Get PDF
    The solution-phase deposition of inorganic semiconductors is a promising, scalable method for the manufacture of thin film photovoltaics. Deposition of photovoltaic materials from molecular or colloidal inks offers the possibility of inexpensive, rapid, high-throughput thin film fabrication through processes such as spray coating. For example, CdTe, Cu(In,Ga)(S,Se)_2 (CIGS), and CH_3NH_3Pb(Cl,I)_3 perovskite-based thin film solar cells have been previously deposited using solution-based processes. Inks have also recently been developed for the solution deposition of Cu_2ZnSn(S,Se)_4 (CZTS) and FeS_2 (iron pyrite) absorber layers for thin film solar applications, in order to provide sustainable alternatives to materials that contain environmentally harmful heavy metals (e.g., Cd, Pb) and/or scarce elements (e.g., Te, In)

    Analysis of caesarean section and neonatal outcome using the Robson classification in a rural district hospital in Tanzania: An observational retrospective study

    Get PDF
    OBJECTIVE: Caesarean section (CS) rates have increased worldwide in recent decades. In 2015, the WHO proposed the use of the 10-group Robson classification as a global standard for assessing, monitoring and comparing CS rates both within healthcare facilities over time and between them. The aim of this study was to assess the pattern of CS rates according to the Robson classification and describe maternal and perinatal outcomes by group at the Tosamaganga Hospital in rural Tanzania. DESIGN: Observational retrospective study. SETTING: St. John of the Cross Tosamaganga Hospital, a referral centre in rural Tanzania. PARTICIPANTS: 3012 women who gave birth in Tosamaganga Hospital from 1 January to 30 June 2014 and from 1 March to 30 November 2015. RESULTS: The overall CS rate was 35.2%, and about 90% of women admitted for labour were in Robson groups 1 through 5. More than 40% of the CS carried out in the hospital were performed on nulliparous women at term with a single fetus in cephalic presentation (groups 1 and 3), and the most frequent indication for the procedure was previous uterine scar (39.2%). The majority of severe neonatal outcomes were observed in groups 1 (27.7%), 10 (24.5%) and 3 (19.1%). CONCLUSION: We recorded a high CS rate in Tosamaganga Hospital, particularly in low-risk patients groups (Robson groups 1 and 3). Our analysis of Robson classification and neonatal outcomes suggests the need to improve labour management at the hospital and to provide timely referrals in order to prevent women from arriving there in critical conditions
    corecore