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The near edge structure (XANES) in K-edge X-ray absorption spectroscopy (XAS) is a

widely used tool for studying electronic and local structure in materials. The precise interpre-

tation of these spectra with the help of calculations is hence of prime importance, especially

for the study of correlated materials which have a complicated electronic structure per se.

The single particle approach, for example, has generally limited itself to the dominant dipolar

cross-section. It has long been known however that effects beyond this approach should be

taken into account, both due to the inadequacy of such calculations when compared to exper-

iment and the presence of shake-up many-body satellites in core-level photoemission spectra

of correlated materials. This effect should manifest itself in XANES spectra and the ques-

tion is firstly how to account for it theoretically and secondly how to verify it experimentally.

By using state-of-the-art first principles electronic structure calculations and 1s photoemission

measurements we demonstrate that shake-up many-body effects are present in K-edge XAS

dipolar spectra of NiO, CoO and CuO at all energy scales. We show that shake-up effects can

be included in K-edge XAS spectra in a simple way by convoluting the single-particle first-

principles calculations including core-hole effects with the 1s photoemission spectra. We thus

describe all features appearing in the XAS dipolar cross-section of NiO and CoO and obtain

a dramatic improvement with respect to the single-particle calculation in CuO. These materi-

als being prototype correlated magnetic oxides, our work points to the presence of shake-up

effects in K-edge XANES of most correlated transition metal compounds and shows how to

account for them, paving the way to a precise understanding of their electronic structure.

Introduction

K-edge absorption spectra are a powerful tool to study the metal-ligand covalency and the metallic

state in complicate chemical systems. For example the position of pre-edge peaks in Cu K-edge

XAS of metalloproteins1 is used to determine the valence state of the active Cu site and to discrim-

inate between Cu(I) and Cu(II) valence. Empirically it has long been recognized that the pre-edge

feature at 8984 eV is present in the absorption edge spectra of Cu(I) complexes but not in those

of Cu(II). Similar analysis have been carried out for Chlorin K-edges in tetrahedral MCln−4 com-
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plexes2,3 (M is a transition metal) or for Sulfur K-edge in Mo bis-dithiolene complexes4 where the

empirical analysis has been completed with density functional theory (DFT) calculations.

All these interpretations relies on the fact that excitations detected in K-edge XAS are mostly

single particle in origin. However, if electron-electron interaction comes into play the situation

could be different. This is particularly evident in core-level photoemission spectra (XPS) of tran-

sition metal compounds where the occurrence of many-body satellites is well documented (for a

review see Ref.5). As for x-ray absorption, interpretation of the dipolar K-edge XAS cross-section

heavily relies on standard single-particle first principles calculations 6–9 that neglect shake-up ex-

citations. Since dipolar L2,3 XAS mostly samples d-states of the absorbing atom which are more

prone to effects of correlation than p-states, one normally assumes that shake-up effects are visible

mostly in L2,3 XAS and not in K XAS. However a recent work10 shows that in NiO the single

particle dipolar K-edge spectrum misses some near-edge and far-edge features present in the ex-

perimental measured one.

We concentrate on shake-up many body excitations arising from a valence electron excita-

tion following the creation of a core hole by the incident x-ray.11 In the past, the description

of shake-up effects in core-hole photoemission spectra has been investigated in the framework of

quantum-chemical calculations ,12 by using approaches based on model hamiltonians5,13,14 or first-

principles modified approaches .15 The occurrence of these effects in XPS is well established but

they have also been shown to occur in M4,5 edges of mixed-valent compounds16 and in L2,3 X-ray

absorption spectra (XAS) of transition metals and rare earths compounds17,18 and were proposed

as a possible explanation of the double peak structure in dipolar K-edge XAS of high Tc cuprates19

and copper compounds in general.20 However this attribution was questioned in Ref.6,21 and the

double peak structure was suggested to be single particle in origin.

Nailing down the importance of these effects has been difficult due to complications related

to many-body calculations but also to the paucity of experimental 1s photoemission spectra. In

this work, following earlier suggestions, we demonstrate that shake-up manybody effects can be

included in a simple way in K-edge XAS spectra by convoluting the single particle first principles
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calculations with experimental 1s photoemission spectra, some of which we have freshly mea-

sured. We show that this procedure explains all features in K-edge XAS spectra of NiO and CoO

and strongly improves the agreement with experimental data in CuO. Our work points out the rel-

evance of these effects in K-edge dipolar XAS of all compounds displaying multiple structures in

photoemission spectra.

Theory

Shake-up theory

Shake up satellites are many-body peaks present in core-electron spectra. They originate from a

valence electron excitation following the creation of a core hole by the incident x-ray.11 Quan-

tum chemical calculations of shake-up satellites have been recently reviewed by Carravetta and

Ågren.12

An electric dipole transition between two Slater determinants built from the same set of or-

bitals do not allow for shake-up satellites. Indeed, the orthogonality of orbitals allows for only

one transition from the core level to the empty one. Therefore, a shake-up can only be obtained

by describing the (initial) state with a linear combination of Slater determinants or by using dif-

ferent orbitals for the initial and final determinants.22 The first approach was extensively used by

Sawatzky and collaborators13 . Here we use dipole transitions between single Slater determinants

using non-orthogonal orbitals, the orbitals of the final state being relaxed in the presence of the

core hole.

The possibility of describing the electronic state of NiO by a single Slater determinant was

suggested in Refs .23–25 Moreover, relaxed Slater determinants can sometimes describe a state

much better than the sum of a small number of unrelaxed Slater determinants.23

A single Slater determinant is also the non-interacting ground state of the Kohn-Sham version

of density funtional theory (DFT). The corresponding Kohn-Sham orbitals are usually considered

to have no physical meaning. This would be a problem for our approach that calculates electric
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dipole transitions between these orbitals. The success of DFT calculations of XAS seems to indi-

cate that Kohn-Sham orbitals are physically meaningful and indeed Gidopoulos26 discovered that

the non-interacting Kohn-Sham ground state is the best approximation of the true ground state in

a subtle way. To describe his finding, let h(r) = −h̄2∆/2m+ v(r) be a one-body potential and

Hv = ∑i h(ri) be the corresponding non-interacting many-body Hamiltonian. Denote by |Ψv⟩ the

(Slater determinant) ground state of Hv and by |Ψ⟩ the ground state of the interacting Hamiltonian

H. By the Rayleigh-Ritz minimum principle we have ⟨Ψ|Hv|Ψ⟩− ⟨Ψv|Hv|Ψv⟩ > 0. Gidopoulos

proved that the potential v that minimizes this difference is precisely the Kohn-Sham potential.

In that sense, the Kohn-Sham determinant and the Kohn-Sham potential provide the best single-

particle description of the ground state of an interacting system.

Therefore, it is relevant to describe shake-up processes with non-orthogonal Slater determi-

nants. Other calculations were carried out within this framework by Tyson,27 who could calculate

double-electron excitations in XAS28 for LN4,5-edges. Similar calculations for x-ray photoemis-

sion spectroscopy are more common.15

Cross section

The manybody X-ray photoemission cross section can be written as29

σXPS(εk) =
2π
h̄ ∑

f
|⟨k,Ψ f (N −1)|T |Φi(N)⟩|2

δ (εk − h̄ω −Ei(N)+E f (N −1)) (1)

where εk is the photoelectron kinetic energy, Ei(N) is the energy of the N electrons ground state

|Φi(N)⟩, E f (N−1) and |Ψ f (N−1)⟩ characterize the excited energy and state of the N−1 electron

system with a core hole and h̄ω is the energy of the incident X-ray beam. The electric-dipole

transition operator is labeled T. The transform IXPS(t) of the XPS cross-section is defined as,

σXPS(ε) = 2Re
∫ +∞

0
dteiε+tIXPS(t) (2)
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where ε+ = ε + iη and Eq. 2 has to be understood as the limit for η → 0+.

The manybody X-ray absorption cross section in the dipolar approximation can be written as

σXAS(ω) =
2π
h̄ ∑

f
|⟨Ψ f (N)|W |Φi(N)⟩|2

δ (E f (N)−Ei(N)− h̄ω) (3)

where now ω is the energy of the incident beam and W is proportional to the dipole transition

operator M, namely W =
√

2π h̄2ωα0M.

Similarly to what was done for the case of XPS and using a similar notation, we can define the

the transform IXAS(t) of the XAS cross-section as

σXAS(t) = 2Re
∫ +∞

0
dteiω+tIXAS(t) (4)

Under the assumption that both Φi and ΨXPS
f are single determinant states, Ohtaka and Tanake30,31

demonstrated that

IXAS(t) = IXPS(t)I0(t) (5)

where both the terms IXPS(t) and I0(t) (see Eq. 4.43 in Ref.31) includes manybody shake-up

processes at all orders. Eq. 5 holds for a generic static core-hole potential. A similar relation was

found for the less-general case of a contact core-hole potential by Nozières and DeDominicis32

using the linked cluster theorem.

If shake-up processes are neglected only in the I0(t) term then I0(t) reduces to Isp
XAS(t), namely

the transform of the single-particle XAS cross section calculated in the presence of a static core-

hole potential. Thus, it is possible to include to some extent many body effects in the XAS cross

section σXAS(ω) by performing the convolution between the measured XPS cross section σ exp.
XPS(ε)

that fully includes manybody shake-up processes and the single-particle calculated XAS cross
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section σ sp
XAS(ω), namely

σXAS(ω) =
∫

dε σ exp.
XPS(ε)σ

sp
XAS(ω − ε) (6)

In our work the single-particle cross section σ sp
XAS(ω) is calculated in the framework of density

functional theory with inclusion of a static core-hole and σ exp.
XPS(ω) is measured.

Technical details

The single particle XAS cross section σ sp
XAS(ω) is calculated in the framework of density functional

theory using the implementation of Ref.6 distributed with the Quantum-Espresso33 distribution.

The technical details for the NiO calculation are the same as in ref.10 We used norm-conserving

pseudopotentials with inclusion of semicore states. The energy cutoffs used in the calculations

were 140 Ryd and 160 Ryd for CuO and CoO, respectively. In the case of CoO, we neglect the

tetragonal structural distortion below the 290K Néel temperature and adopt magnetic and crystal

structures similar to those of NiO. The electron-momentum grids for the Brillouin zone integra-

tion and the choice of the supercell for the XAS calculation are the same as for the NiO case in

ref.10 The CuO XAS cross-section was calculated in the supercell obtained by doubling the an-

tiferromegnetic cell along the shortest direction. The antiferromagnetic cell is obtained from the

non-magnetic one by defining as new lattice vectors a′ = a+ c, b′ = b, and c′ = a− c where a,b,

and c are the direct lattice vectors. We then use a 3× 3× 3 electron-momentum grid in the su-

percell to obtain the self consistent charge density and a 3×3×3 electron-momentum grid in the

supercell to calculate the XAS cross-section.

Finally we employ the DFT+U approximation in all case with U = 7.75 eV and U = 11.1 eV

for CoO and CuO respectively. These values of the Hubbard repulsion are calculated from first

principles using the method of ref.34
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Experiment

The Ni-1s photoemission spectrum in NiO were measured at the HIKE station of the KMC-1

beamline at BESSY.35,36 The spectra were recorded with a SCIENTA R4000 photoelectron ana-

lyzer placed at 90◦ from the x-ray beam. The incident x-ray beam (9 keV) was monochromatized

by a pair of Si(422) crystals providing ∼500 meV energy bandwidth. To avoid charging effects, a

25 nm thick NiO thin film was grown on a Ag substrate in the presence of oxygen, and capped by

3 nm of MgO. The growth of NiO was found fully epitaxial with the NiO(001) direction parallel

to Ag(001) as confirmed by the LEED patterns. The sample was positioned at a grazing angle of

89.99◦ from the incident x-rays in order to reduce the penetration depth of photons and enhance

the photoelectron yield.

The XAS spectra of NiO and CoO were borrowed from Refs.37 and38 respectively.

Results

Nickel Oxide

The measured 1s photoemission spectra of NiO are shown in Fig. 1. The fit to the data is consistent

with a three peak structure in the 590-610 eV energy region. The results closely resemble 2p3/2

Ni photoemission in NiO14,39 in this energy region. In literature the attribution of the different

features in 2p3/2 Ni XPS is very controversial and was subject to several reinterpretations. Van

Veenendal and Sawatzky13 attributed the main feature at high energy to a 2p53d9L state, where

L means a hole in the ligand state. The satellite of the main peak (shoulder) was attributed to

non-local screening coming from the nearest neighbours Ni atoms, while the lower energy satellite

at ≈ 596 eV was attributed to a 2p63d10L. Recently this was reconsidered in ref.14 where the

main feature was attributed to a 2p53d9Z, where Z is a Zhang-Rice k-dispersing bound state.40

The shoulder of the main peak is attributed to a 2p53d9L state and the lowest energy feature to a

2p53d8 state. Here we show that, regardless of their attribution, the features measured in 1s Ni NiO
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Figure 1: figure 1: Experimental (circle) and fitted (lines) 1s photoemission spectra in NiO

XPS are present also in the dipolar Ni K-edge XAS spectrum of NiO.

In Fig. 2 we show the measured and calculated XAS cross sections. The single particle cross

section is generally in good agreement with the dipolar part of the measured spectrum except for

the two peaks indicated by the letters F and H that are missing in the single particle calculation. In

order to determine if the missing excitations are manybody in nature, and eventually due to multi-

determinant or shake-up processes, we then proceed by using Eq. 6 and obtain new XAS spectra.

We first perform the convolution using the complete three-peaks structure of the XPS spectra.

We find that the convolution of the DFT calculated XAS cross-section with the photoemission

spectra greatly improves the agreement with experiments. In particular the missing peaks are now

present in the spectrum and a better agreement occurs at all energy scales. The F and H peaks are

then replicas of the single particle E and G peaks respectively and are manybody in nature. We

can further test to what extent this interpretation is robust by altering the XPS spectrum before
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Figure 2: Convolution of experimental XPS (this work) and single particle XAS calculation in NiO
at the Ni K-edge. Convolution with two or three component is shown with solid line and dashed
line respectively (middle spectra). Experimental XAS data are from Ref.37

convolution with the theoretical single-particle XAS calculation. We do this for NiO by artificially

supressing the main peak of the XPS spectrum, leaving the shoulder and the satellite. We find that

the resulting absorption spectrum (dashed line Fig xxx)is less in agreement with the experimental

spectrum supporting our interpretation.

Cobalt Oxide

Co 1s photoemission data of CoO are not available in literature. However 2p3/2and 3s Co XPS

data39,41 are extremely similar and composed by two main peaks and a small shoulder at low

energy visible only in the 3s data. We then consider 3s photoemission data of Ref.39 and fit them

with a two-peak structure and neglect the very small shoulder, invisible in 2p photoemission data.

The results are shown in Fig. 3.
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Figure 3: Convolution of experimental XPS data of Refs.39,41 and single particle XAS calculation
in CoO at the Co K-edge. Experimental XAS data are from Ref.38

The situation is very similar to NiO, namely the F peak is missing missing from the single-

particle spectrum and the H peak is weak. Convolution with photoemission improves substantially

the agreement although the main edge peak is narrower than the experimental data.

Copper Oxide

The copper oxide CuO has a monoclinic crystal structure with symmetry group C/2c . The dipolar

part in CuO was measured in ref.42,43 We follow the notation of refs.42,43 and label the configu-

ration of the crystal with respect to the incident beam by the three angles (θ ,ϕ ,ψ). These angles

correspond to the three rotation angles of the goniometer. In particular, when the three angles are

zero, then the polarization is parallel to the θ axis of the goniometer and to the c-axis of the crystal.

At zero angles, the plate holding the sample is orthogonal to the incident beam and parallel to one
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of the plaquette chains in the crystal (see Ref.43 Fig. 10 for more details).

Given the low symmetry of the crystal, the polarization dependence of CuO K-edge XAS

spectra is very complicated, as can be seen in Fig. 4. The calculated single particle spectra are in

strong disagreement with experiments. Both the peak positions and the polarization dependence

of the intensities disagree with the measured data. In order to see if the disagreement is due to

the lack of manybody effects in the XAS cross-section, we consider the convolution with Cu 1s

photoemission spectra.44 Cu 1s photoemission spectra of CuO are composed of two peaks, usually

attributed to 3d9 and 3d10L. Performing the convolution with the calculated single particle Cu

K-edge XAS leads to an impressive improvement. The convoluted spectrum is in much better

agreement with experimental data, demonstrating that the Cu K-edge XAS spectrum in CuO is

dominated by shake-up manybody processes.

Conclusions

We have demonstrated that shake-up processes occur in dipolar K-edge XAS spectra of NiO, CoO,

CuO. As these are prototype correlated transition metal oxides, we expect these excitations to be

present in all XAS data of correlated materials. To be more precise, whenever charge transfer satel-

lites occur in XPS core-hole spectra, then shake-up satellites must also occur in the corresponding

X-ray absorption edge, at all energy scales.

We have also shown that a practical way to include these effects in first principle calculations

is to perform the convolution with the XPS spectrum at the same edge, as suggested by Eq. 6.

Despite the fact that Eq. 6 was obtained many years ago,30–32 we are currently unaware of other

works trying to explicitly apply this equation to K-edge XAS by using state of the art calculations.

Our work that full includes core-hole attraction and Hubbard U at the DFT+U level demonstrates

that this approach is feasible and allows, for the first time, the attribution of all dipolar peaks in

NiO and CoO dipolar K-edge XAS spectra.

In Eq. 6 we neglected the additional many-body terms30,31 that are present in I0(t). These
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terms seem to be neglible in NiO and CoO, but could explain the remaining discrepancy between

theory and experiment in CuO. Further work is required to calculate these many-body correction

terms.

Acknowledgement

M. C. acknowledges fruitful discussion with F. Mauri. Calculations were carried out at the IDRIS

supercomputing center (proposal number: 091202).

References

(1) L. ShanKau,D. J. Spira-Solomon,J. E. Penner-Hahn,K. 0.Hodgson,* and E. I. Solomon, J.

Am. Chem. Soc. . 109, 6433 (1987)

(2) S. E. Shadle,B. Hedman,K. 0. Hodgson,and E. I. Solomon, J. Am. Chem. Soc. 117, 2259

(1995)

(3) A. Rompel, J. C. Andrews, R. M. Cinco, M. W. Wemple, G. Christou, N. A. Law, V. L.

Pecoraro, K. Sauer, V. K. Yachandra, and Melvin P. Klein, J. Am. Chem. Soc. 119, 4465-

4470 (1997)

(4) A. L. Tenderholt,J. J. Wang, R. K. Szilagyi,R. H. Holm, K. O. Hodgson, B. Hedman, and E.

I. Solomon J. Am. Chem. Soc. 132 , 8359 (2010)

(5) F. de Groot and A. Kotani, Core Level Spectroscopy of Solids, Taylor and Francis 2008.

(6) C. Gougoussis, M. Calandra, A. P. Seitsonen, and F. Mauri, Phys. Rev. B 80, 075102 (2009)

(7) Mathieu Taillefumier, Delphine Cabaret, Anne-Marie Flank, and Francesco Mauri Phys. Rev.

B 66, 195107 (2002)

(8) C.Hebert, Micron 38 12 (2007)

(9) Y. Joly, Phys. Rev. B 63, 125120 (2001)

13



(10) C. Gougoussis, M. Calandra, A. Seitsonen, Ch. Brouder, A. Shukla, and F. Mauri, Phys. Rev.

B 79, 045118 (2009)

(11) H. Ågren and V. Carravetta. Inter. J. Quant. Chem., 42, 685 (1992)

(12) V. Carravetta and H. Ågren. Computational x-ray spectroscopy. In V. Barone, editor, Compu-

tational Strategies for Spectroscopy: From Small Molecules to Nano Systems, pages 137–205,

Hoboken, 2012. Wiley.

(13) M. A. van Veenendal and G. A. Sawatzky, Phys. Rev. Lett. 70, 2459 (1993)

(14) M. Taguchi, M. Matsunami, Y. Ishida, R. Eguchi, A. Chainani, Y. Takata, M. Yabashi, K.

Tamasaku, Y. Nishino, T. Ishikawa, Y. Senba, H. Ohashi and S. Shin, Phys. Rev. Lett. 100,

206401 (2008)

(15) M. Takahashi and J. I. Igarashi. Phys. Rev. B, 85, 085128 (2012)

(16) Fuggle, J. C., Hillebrecht, F. U., Esteva, J.-M. , Karnatak, R. C. , Gunnarsson, O. , Schön-

hammer, K., Phys. Rev. B 27, 4637 (1983)

(17) Y. Hammoud, J. C. Parlebas, F. Gauthier, J. Phys. F, 17, 503 (1987)

(18) D. Malterre, Phys. Rev. B 43, 1391 (1991)

(19) H. Tolentino, M. Medarde, A. Fontaine, F. Baudelet, E. Dartyge, D. Guay and G. Tourillon,

Phys. Rev. B 45, 8091 (1992)

(20) R. Bair and W. Goddard, Phys. Rev. B 22 2767–2776 (1980)

(21) N. Kosugi, Y. Tokura, H. Takagi and S. Uchida, Phys. Rev. B 41, 131–137 (1990)

(22) R. L. Martin and D. A. Shirley. J. Chem. Phys., 64, 3685 (1976)

(23) B. H. Brandow. Adv. Phys., 26, 651 (1977)

(24) B. H. Brandow. J. Alloys Compounds, 181, 377 (1992)

14



(25) N. M. Harrison, V. R. Saunders, R. Dovesi, and W. C. Mackrodt. Phil. Trans. R. Soc. Lond.

A, 356, 75 (1998)

(26) N. I. Gidopoulos. Phys. Rev. A, 83, 040502 (2011)

(27) T. A. Tyson. X-ray Absorption Spectroscopy: Experimental K, L and KL Spectra with Quan-

titative Models. Ph.D. thesis, Stanford University, 1991

(28) J. Chaboy and T; A. Tyson. Phys. Rev. B, 49, 5869 (1994)

(29) C. O. Almbladh and L. Hedin, Handbook of Synchrotron radiation, Vol. 1b, 607, 1983, North-

Holland Amsterdam

(30) K. Ohtaka and M. Tanabe, Phys. Rev. B 28, 6833 (1983)

(31) K. Ohtaka and M. Tanabe, Rev. Mod. Phys. 62, 929 (1990)

(32) P. Nozières and C. T. DeDominicis, Phys. Rev. 178, 1097 (1969)

(33) P. Gianozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009)

(34) M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 035105 (2005)

(35) M. Gorgoi, S. Svensson, F. Schäfers, G. Öhrwall, M. Mertin, P. Bressler, O. Karis, H. Sieg-

bahn, A. Sandell, H. Rensmo, W. Doherty, C. Jung, W. Braun, and W. Eberhardt, Nucl.

Instrum. Meth. A 601, 48 (2009)

(36) F. Schaefers, M. Mertin, and M. Gorgoi, Rev. Sci. Instrum. 78, 123102 (2007)

(37) R. V. Vedrinskii, V. L. Kraizman, A. A. Novakovich, Sh. M. Elyafi, S. Bocharov, Th. Kirch-

ner, and G. Dräger, Phys. Status Solidi B 226, 203 (2001)

(38) H. Modrow, S. Bucher, J. J. Rehr and A. L. Ankudinov Phys. Rev. B 67, 035123 (2003)

(39) F. Parmigiani and L. Sangaletti, Journal of Electron Spectroscopy and Related Phenomena,

98-99, 287, 1999.

15



(40) J. Kunes, V. I. Anisimov, S. L. Skornyakov, A. V. Lukoyanov, and D. Vollhardt, Phys. Rev.

Lett. 99, 156404 (2007)

(41) Shen, Z.-X., J. W. Allen, P. A. P. Lindberg, D. S. Dessau, B. O. Wells, A. Borg, W. Ellis, J.

S. Kang, S.-J. Oh, I. Lindau, and W. E. Spicer, Phys. Rev. B 42, 1817 (1990)

(42) S. Bocharov, Th. Kirchner, G. Dräger, O. Sipr, and A. Simunek, Phys. Rev. B 63, 045104

(2001).

(43) S. Bocharov. Winkelabhn̈gige K-Rn̈tgenabsorption und Elektronenstruktur von 3d-

Metallverbindungen. PhD thesis, VanMartin-Luther-Universitẗ Halle-Wittenberg, 2001.
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Figure 4: Convolution between measured XPS from Ref.44 and single particle XAS calculation at
the Cu K-edge. Experimental XAS data are from42,43
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