1,165 research outputs found
Semantic-driven matchmaking of web services using case-based reasoning
With the rapid proliferation of Web services as the medium of choice to securely publish application services beyond the firewall, the importance of accurate, yet flexible matchmaking of similar services gains importance both for the human user and for dynamic composition engines. In this paper, we present a novel approach that utilizes the case based reasoning methodology for modelling dynamic Web service discovery and matchmaking. Our framework considers Web services execution experiences in the decision making process and is highly adaptable to the service requester constraints. The framework also utilises OWL semantic descriptions extensively for implementing both the components of the CBR engine and the matchmaking profile of the Web services
A novel application of deep learning with image cropping: a smart city use case for flood monitoring
© 2020, The Author(s). Event monitoring is an essential application of Smart City platforms. Real-time monitoring of gully and drainage blockage is an important part of flood monitoring applications. Building viable IoT sensors for detecting blockage is a complex task due to the limitations of deploying such sensors in situ. Image classification with deep learning is a potential alternative solution. However, there are no image datasets of gullies and drainages. We were faced with such challenges as part of developing a flood monitoring application in a European Union-funded project. To address these issues, we propose a novel image classification approach based on deep learning with an IoT-enabled camera to monitor gullies and drainages. This approach utilises deep learning to develop an effective image classification model to classify blockage images into different class labels based on the severity. In order to handle the complexity of video-based images, and subsequent poor classification accuracy of the model, we have carried out experiments with the removal of image edges by applying image cropping. The process of cropping in our proposed experimentation is aimed to concentrate only on the regions of interest within images, hence leaving out some proportion of image edges. An image dataset from crowd-sourced publicly accessible images has been curated to train and test the proposed model. For validation, model accuracies were compared considering model with and without image cropping. The cropping-based image classification showed improvement in the classification accuracy. This paper outlines the lessons from our experimentation that have a wider impact on many similar use cases involving IoT-based cameras as part of smart city event monitoring platforms
Toward Specification-Guided Active Mars Exploration for Cooperative Robot Teams
As a step towards achieving autonomy in space exploration missions, we consider a cooperative robotics system consisting of a copter and a rover. The goal of the copter is to explore an unknown environment so as to maximize knowledge about a science mission expressed in linear temporal logic that is to be executed by the rover. We model environmental uncertainty as a belief space Markov decision process and formulate the problem as a two-step stochastic dynamic program that we solve in a way that leverages the decomposed nature of the overall system. We demonstrate in simulations that the robot team makes intelligent decisions in the face of uncertainty
User Interaction with Linked Data: An Exploratory Search Approach
NoIt is becoming increasingly popular to expose government and citywide sensor data as linked data. Linked data appears to offer a great potential for exploratory search in supporting smart city goals of helping users to learn and make sense of complex and heterogeneous data. However, there are no systematic user studies to provide an insight of how browsing through linked data can support exploratory search. This paper presents a user study that draws on methodological and empirical underpinning from relevant exploratory search studies. The authors have developed a linked data browser that provides an interface for user browsing through several datasets linked via domain ontologies. In a systematic study that is qualitative and exploratory in nature, they have been able to get an insight on central issues related to exploratory search and browsing through linked data. The study identifies obstacles and challenges related to exploratory search using linked data and draws heuristics for future improvements. The authors also report main problems experienced by users while conducting exploratory search tasks, based on which requirements for algorithmic support to address the observed issues are elicited. The approach and lessons learnt can facilitate future work in browsing of linked data, and points at further issues that have to be addressed
Prefetching and clustering techniques for network based storage.
The usage of network-based applications is increasing, as network speeds increase, and the use of streaming applications, e.g BBC iPlayer, YouTube etc., running over network infrastructure is becoming commonplace. These
applications access data sequentially. However, as processor speeds and the amount of memory available increase, the rate at which streaming applications access data is now faster than the rate at which the blocks can be
fetched consecutively from network storage. In addition to sequential access, the system also needs to promptly satisfy demand misses in order for applications to continue their execution.
This thesis proposes a design to provide Quality-Of-Service (QoS) for streaming applications (sequential accesses) and demand misses, such that, streaming applications can run without jitter (once they are started) and demand misses can be satisfied in reasonable time using network storage. To implement the proposed design in real time, the thesis presents an analytical
model to estimate the average time taken to service a demand miss.
Further, it defines and explores the operational space where the proposed QoS could be provided. Using database techniques, this region is then encapsulated into an autonomous algorithm which is verified using simulation.
Finally, a prototype Experimental File System (EFS) is designed and implemented to test the algorithm on a real test-bed
The calcilytic agent NPS 2143 rectifies hypocalcemia in a mouse model with an activating calcium-sensing-receptor (CaSR) mutation:relevance to autosomal dominant hypocalcemia type 1 (ADH1)
Autosomal dominant hypocalcemia type 1 (ADH1) is caused by germline gain-of-function mutations of the calcium-sensing receptor (CaSR) and may lead to symptomatic hypocalcemia, inappropriately low serum parathyroid hormone (PTH) concentrations and hypercalciuria. Negative allosteric CaSR modulators, known as calcilytics, have been shown to normalise the gain-of-function associated with ADH-causing CaSR mutations in vitro and represent a potential targeted therapy for ADH1. However, the effectiveness of calcilytic drugs for the treatment of ADH1-associated hypocalcemia remains to be established. We have investigated NPS 2143, a calcilytic compound, for the treatment of ADH1 by in vitro and in vivo studies involving a mouse model, known as Nuf, which harbors a gain-of-function CaSR mutation, Leu723Gln. Wild-type (Leu723) and Nuf mutant (Gln723) CaSRs were expressed in HEK293 cells and the effect of NPS 2143 on their intracellular calcium responses determined by flow cytometry. NPS 2143 was also administered as a single intraperitoneal bolus to wild-type and Nuf mice and plasma concentrations of calcium and PTH, and urinary calcium excretion measured. In vitro administration of NPS 2143 decreased the intracellular calcium responses of HEK293 cells expressing the mutant Gln723 CaSR in a dose-dependent manner, thereby rectifying the gain-of-function associated with the Nuf mouse CaSR mutation. Intraperitoneal injection of NPS 2143 in Nuf mice led to significant increases in plasma calcium and PTH without elevating urinary calcium excretion. These studies of a mouse model with an activating CaSR mutation demonstrate NPS 2143 to normalize the gain-of-function causing ADH1, and improve the hypocalcemia associated with this disorder
Temporal Logic Control of POMDPs via Label-based Stochastic Simulation Relations
The synthesis of controllers guaranteeing linear temporal logic specifications on partially observable Markov decision processes (POMDP) via their belief models causes computational issues due to the continuous spaces. In this work, we construct a finite-state abstraction on which a control policy is synthesized and refined back to the original belief model. We introduce a new notion of label-based approximate stochastic simulation to quantify the deviation between belief models. We develop a robust synthesis methodology that yields a lower bound on the satisfaction probability, by compensating for deviations a priori, and that utilizes a less conservative control refinement
Expression of GABAA receptor subunit genes in the avian song system and their role in learning and memory
Large-scale exome datasets reveal a new class of adaptor-related protein complex 2 sigma subunit (AP2 sigma) mutations, located at the interface with the AP2 alpha subunit, that impair calcium-sensing receptor signalling
An intelligent framework for dynamic web services composition in the semantic web
As Web services are being increasingly adopted as the distributed computing technology of choice to securely publish application services beyond the firewall, the importance of composing them to create new, value-added service, is increasing. Thus far, the most successful practical approach to Web services composition, largely endorsed by the industry falls under the static composition category where the service selection and flow management are done a priori and manually. The second approach to web-services composition aspires to achieve more dynamic composition by semantically describing the process model of Web services and thus making it comprehensible to reasoning engines or software agents. The practical implementation of the dynamic composition approach is still in its infancy and many complex problems need to be resolved before it can be adopted outside the research communities.
The investigation of automatic discovery and composition of Web services in this thesis resulted in the development of the eXtended Semantic Case Based Reasoner (XSCBR), which utilizes semantic web and AI methodology of Case Based Reasoning (CBR). Our framework uses OWL semantic descriptions extensively for implementing both the matchmaking profiles of the Web services and the components of the CBR engine.
In this research, we have introduced the concept of runtime behaviour of services and consideration of that in Web services selection. The runtime behaviour of a service is a result of service execution and how the service will behave under different circumstances, which is difficult to presume prior to service execution. Moreover, we demonstrate that the accuracy of automatic matchmaking of Web services can be further improved by taking into account the adequacy of past matchmaking experiences for the requested task. Our XSCBR framework allows annotating such runtime experiences in terms of storing execution values of non-functional Web services parameters such as availability and response time into a case library. The XSCBR algorithm for matchmaking and discovery considers such stored Web services execution experiences to determine the adequacy of services for a particular task.
We further extended our fundamental discovery and matchmaking algorithm to cater for web services composition. An intensive knowledge-based substitution approach was proposed to adapt the candidate service experiences to the requested solution before suggesting more complex and computationally taxing AI-based planning-based transformations. The inconsistency problem that occurs while adapting existing service composition solutions is addressed with a novel methodology based on Constraint Satisfaction Problem (CSP).
From the outset, we adopted a pragmatic approach that focused on delivering an automated Web services discovery and composition solution with the minimum possible involvement of all composition participants: the service provider, the requestor and the service composer. The qualitative evaluation of the framework and the composition tools, together with the performance study of the XSCBR framework has verified that we were successful in achieving our goal
- …
