2,466 research outputs found
Direct imaging constraints on planet populations detected by microlensing
Results from gravitational microlensing suggested the existence of a large
population of free-floating planetary mass objects. The main conclusion from
this work was partly based on constraints from a direct imaging survey. This
survey determined upper limits for the frequency of stars that harbor giant
exoplanets at large orbital separations. Aims. We want to verify to what extent
upper limits from direct imaging do indeed constrain the microlensing results.
We examine the current derivation of the upper limits used in the microlensing
study and re-analyze the data from the corresponding imaging survey. We focus
on the mass and semi-major axis ranges that are most relevant in context of the
microlensing results. We also consider new results from a recent M-dwarf
imaging survey as these objects are typically the host stars for planets
detected by microlensing. We find that the upper limits currently applied in
context of the microlensing results are probably underestimated. This means
that a larger fraction of stars than assumed may harbor gas giant planets at
larger orbital separations. Also, the way the upper limit is currently used to
estimate the fraction of free-floating objects is not strictly correct. If the
planetary surface density of giant planets around M-dwarfs is described as
df_Planet ~ a^beta da, we find that beta ~ 0.5 - 0.6 is consistent with results
from different observational studies probing semi-major axes between ~0.03 - 30
AU. Having a higher upper limit on the fraction of stars that may have gas
giant planets at orbital separations probed by the microlensing data implies
that more of the planets detected in the microlensing study are potentially
bound to stars rather than free-floating. The current observational data are
consistent with a rising planetary surface density for giant exoplanets around
M-dwarfs out to ~30 AU.Comment: Accepted for publication in A&A as Research Note, 3 page
Comparison of two models for bridge-assisted charge transfer
Based on the reduced density matrix method, we compare two different
approaches to calculate the dynamics of the electron transfer in systems with
donor, bridge, and acceptor. In the first approach a vibrational substructure
is taken into account for each electronic state and the corresponding states
are displaced along a common reaction coordinate. In the second approach it is
assumed that vibrational relaxation is much faster than the electron transfer
and therefore the states are modeled by electronic levels only. In both
approaches the system is coupled to a bath of harmonic oscillators but the way
of relaxation is quite different. The theory is applied to the electron
transfer in with free-base porphyrin () being the donor, zinc porphyrin () being the bridge and
quinone () the acceptor. The parameters are chosen as similar as
possible for both approaches and the quality of the agreement is discussed.Comment: 12 pages including 4 figures, 1 table, 26 references. For more info
see http://eee.tu-chemnitz.de/~kili
About the maximal rank of 3-tensors over the real and the complex number field
High dimensional array data, tensor data, is becoming important in recent
days. Then maximal rank of tensors is important in theory and applications. In
this paper we consider the maximal rank of 3 tensors. It can be attacked from
various viewpoints, however, we trace the method of Atkinson-Stephens(1979) and
Atkinson-Lloyd(1980). They treated the problem in the complex field, and we
will present various bounds over the real field by proving several lemmas and
propositions, which is real counterparts of their results.Comment: 13 pages, no figure v2: correction and improvemen
Optical properties of small polarons from dynamical mean-field theory
The optical properties of polarons are studied in the framework of the
Holstein model by applying the dynamical mean-field theory. This approach
allows to enlighten important quantitative and qualitative deviations from the
limiting treatments of small polaron theory, that should be considered when
interpreting experimental data. In the antiadiabatic regime, accounting on the
same footing for a finite phonon frequency and a finite electron bandwidth
allows to address the evolution of the optical absorption away from the
well-understood molecular limit. It is shown that the width of the multiphonon
peaks in the optical spectra depends on the temperature and on the frequency in
a way that contradicts the commonly accepted results, most notably in the
strong coupling case. In the adiabatic regime, on the other hand, the present
method allows to identify a wide range of parameters of experimental interest,
where the electron bandwidth is comparable or larger than the broadening of the
Franck-Condon line, leading to a strong modification of both the position and
the shape of the polaronic absorption. An analytical expression is derived in
the limit of vanishing broadening, which improves over the existing formulas
and whose validity extends to any finite-dimensional lattice. In the same
adiabatic regime, at intermediate values of the interaction strength, the
optical absorption exhibits a characteristic reentrant behavior, with the
emergence of sharp features upon increasing the temperature -- polaron
interband transitions -- which are peculiar of the polaron crossover, and for
which analytical expressions are provided.Comment: 16 pages, 6 figure
High precision microlensing maps of the Galactic bulge
We present detailed maps of the microlensing optical depth and event density
over an area of 195 sq. deg towards the Galactic bulge. The maps are computed
from synthetic stellar catalogues generated from the Besancon Galaxy Model,
which comprises four stellar populations and a three-dimensional extinction map
calibrated against the Two-Micron All-Sky Survey. The optical depth maps have a
resolution of 15 arcminutes, corresponding to the angular resolution of the
extinction map. We compute optical depth and event density maps for all
resolved sources above I=19, for unresolved (difference image) sources
magnified above this limit, and for bright standard candle sources in the
bulge. We show that the resulting optical depth contours are dominated by
extinction effects, exhibiting fine structure in stark contrast to previous
theoretical optical depth maps. Optical depth comparisons between Galactic
models and optical microlensing survey measurements cannot safely ignore
extinction or assume it to be smooth. We show how the event distribution for
hypothetical J and K-band microlensing surveys, using existing ground-based
facilities such as VISTA, UKIRT or CFHT, would be much less affected by
extinction, especially in the K band. The near infrared provides a substantial
sensitivity increase over current I-band surveys and a more faithful tracer of
the underlying stellar distribution, something which upcoming variability
surveys such as VVV will be able to exploit. Synthetic population models offer
a promising way forward to fully exploit large microlensing datasets for
Galactic structure studies.Comment: 8 pages, submitted to MNRA
The Peculiar Phase Structure of Random Graph Bisection
The mincut graph bisection problem involves partitioning the n vertices of a
graph into disjoint subsets, each containing exactly n/2 vertices, while
minimizing the number of "cut" edges with an endpoint in each subset. When
considered over sparse random graphs, the phase structure of the graph
bisection problem displays certain familiar properties, but also some
surprises. It is known that when the mean degree is below the critical value of
2 log 2, the cutsize is zero with high probability. We study how the minimum
cutsize increases with mean degree above this critical threshold, finding a new
analytical upper bound that improves considerably upon previous bounds.
Combined with recent results on expander graphs, our bound suggests the unusual
scenario that random graph bisection is replica symmetric up to and beyond the
critical threshold, with a replica symmetry breaking transition possibly taking
place above the threshold. An intriguing algorithmic consequence is that
although the problem is NP-hard, we can find near-optimal cutsizes (whose ratio
to the optimal value approaches 1 asymptotically) in polynomial time for
typical instances near the phase transition.Comment: substantially revised section 2, changed figures 3, 4 and 6, made
minor stylistic changes and added reference
MOA-2011-BLG-293Lb: First Microlensing Planet possibly in the Habitable Zone
We used Keck adaptive optics observations to identify the first planet
discovered by microlensing to lie in or near the habitable zone, i.e., at
projected separation AU from its host, being the highest microlensing mass definitely identified.
The planet has a mass , and could in principle
have habitable moons. This is also the first planet to be identified as being
in the Galactic bulge with good confidence: kpc. The
planet/host masses and distance were previously not known, but only estimated
using Bayesian priors based on a Galactic model (Yee et al. 2012). These
estimates had suggested that the planet might be a super-Jupiter orbiting an M
dwarf, a very rare class of planets. We obtained high-resolution images
using Keck adaptive optics to detect the lens and so test this hypothesis. We
clearly detect light from a G dwarf at the position of the event, and exclude
all interpretations other than that this is the lens with high confidence
(95%), using a new astrometric technique. The calibrated magnitude of the
planet host star is . We infer the following probabilities
for the three possible orbital configurations of the gas giant planet: 53% to
be in the habitable zone, 35% to be near the habitable zone, and 12% to be
beyond the snow line, depending on the atmospherical conditions and the
uncertainties on the semimajor axis.Comment: Accepted by ApJ, 21 pages, 4 figure
Chebyshev approach to quantum systems coupled to a bath
We propose a new concept for the dynamics of a quantum bath, the Chebyshev
space, and a new method based on this concept, the Chebyshev space method. The
Chebyshev space is an abstract vector space that exactly represents the
fermionic or bosonic bath degrees of freedom, without a discretization of the
bath density of states. Relying on Chebyshev expansions the Chebyshev space
representation of a bath has very favorable properties with respect to
extremely precise and efficient calculations of groundstate properties, static
and dynamical correlations, and time-evolution for a great variety of quantum
systems. The aim of the present work is to introduce the Chebyshev space in
detail and to demonstrate the capabilities of the Chebyshev space method.
Although the central idea is derived in full generality the focus is on model
systems coupled to fermionic baths. In particular we address quantum impurity
problems, such as an impurity in a host or a bosonic impurity with a static
barrier, and the motion of a wave packet on a chain coupled to leads. For the
bosonic impurity, the phase transition from a delocalized electron to a
localized polaron in arbitrary dimension is detected. For the wave packet on a
chain, we show how the Chebyshev space method implements different boundary
conditions, including transparent boundary conditions replacing infinite leads.
Furthermore the self-consistent solution of the Holstein model in infinite
dimension is calculated. With the examples we demonstrate how highly accurate
results for system energies, correlation and spectral functions, and
time-dependence of observables are obtained with modest computational effort.Comment: 18 pages, 13 figures, to appear in Phys. Rev.
Galactic bulge giants: probing stellar and galactic evolution I. Catalogue of Spitzer IRAC and MIPS sources
Aims: We aim at measuring mass-loss rates and the luminosities of a
statistically large sample of Galactic bulge stars at several galactocentric
radii. The sensitivity of previous infrared surveys of the bulge has been
rather limited, thus fundamental questions for late stellar evolution, such as
the stage at which substantial mass-loss begins on the red giant branch and its
dependence on fundamental stellar properties, remain unanswered. We aim at
providing evidence and answers to these questions. Methods: To this end, we
observed seven 15 times 15 arcmin^2 fields in the nuclear bulge and its
vicinity with unprecedented sensitivity using the IRAC and MIPS imaging
instruments on-board the Spitzer Space Telescope. In each of the fields, tens
of thousands of point sources were detected. Results: In the first paper based
on this data set, we present the observations, data reduction, the final
catalogue of sources, and a detailed comparison to previous mid-IR surveys of
the Galactic bulge, as well as to theoretical isochrones. We find in general
good agreement with other surveys and the isochrones, supporting the high
quality of our catalogue.Comment: 21 pages, accepted for publication in A&A. A version with
high-resolution figures, as well as the data catalogues (including cross-id
with GLIMPSE and GALCEN) and image mosaics are available at the anonymous
ftp://ftp.ster.kuleuven.be/dist/stefan/Spitzer
- …
