593 research outputs found
Metabolite essentiality elucidates robustness of Escherichia coli metabolism
Complex biological systems are very robust to genetic and environmental
changes at all levels of organization. Many biological functions of Escherichia
coli metabolism can be sustained against single-gene or even multiple-gene
mutations by using redundant or alternative pathways. Thus, only a limited
number of genes have been identified to be lethal to the cell. In this regard,
the reaction-centric gene deletion study has a limitation in understanding the
metabolic robustness. Here, we report the use of flux-sum, which is the
summation of all incoming or outgoing fluxes around a particular metabolite
under pseudo-steady state conditions, as a good conserved property for
elucidating such robustness of E. coli from the metabolite point of view. The
functional behavior, as well as the structural and evolutionary properties of
metabolites essential to the cell survival, was investigated by means of a
constraints-based flux analysis under perturbed conditions. The essential
metabolites are capable of maintaining a steady flux-sum even against severe
perturbation by actively redistributing the relevant fluxes. Disrupting the
flux-sum maintenance was found to suppress cell growth. This approach of
analyzing metabolite essentiality provides insight into cellular robustness and
concomitant fragility, which can be used for several applications, including
the development of new drugs for treating pathogens.Comment: Supplements available at
http://stat.kaist.ac.kr/publication/2007/PJKim_pnas_supplement.pd
Complex networks theory for analyzing metabolic networks
One of the main tasks of post-genomic informatics is to systematically
investigate all molecules and their interactions within a living cell so as to
understand how these molecules and the interactions between them relate to the
function of the organism, while networks are appropriate abstract description
of all kinds of interactions. In the past few years, great achievement has been
made in developing theory of complex networks for revealing the organizing
principles that govern the formation and evolution of various complex
biological, technological and social networks. This paper reviews the
accomplishments in constructing genome-based metabolic networks and describes
how the theory of complex networks is applied to analyze metabolic networks.Comment: 13 pages, 2 figure
A stitch in time: Efficient computation of genomic DNA melting bubbles
Background: It is of biological interest to make genome-wide predictions of
the locations of DNA melting bubbles using statistical mechanics models.
Computationally, this poses the challenge that a generic search through all
combinations of bubble starts and ends is quadratic.
Results: An efficient algorithm is described, which shows that the time
complexity of the task is O(NlogN) rather than quadratic. The algorithm
exploits that bubble lengths may be limited, but without a prior assumption of
a maximal bubble length. No approximations, such as windowing, have been
introduced to reduce the time complexity. More than just finding the bubbles,
the algorithm produces a stitch profile, which is a probabilistic graphical
model of bubbles and helical regions. The algorithm applies a probability peak
finding method based on a hierarchical analysis of the energy barriers in the
Poland-Scheraga model.
Conclusions: Exact and fast computation of genomic stitch profiles is thus
feasible. Sequences of several megabases have been computed, only limited by
computer memory. Possible applications are the genome-wide comparisons of
bubbles with promotors, TSS, viral integration sites, and other melting-related
regions.Comment: 16 pages, 10 figure
Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study
The last decade has seen an explosion in models that describe phenomena in
systems medicine. Such models are especially useful for studying signaling
pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to
showcase current mathematical and statistical techniques that enable modelers
to gain insight into (models of) gene regulation, and generate testable
predictions. We introduce a range of modeling frameworks, but focus on ordinary
differential equation (ODE) models since they remain the most widely used
approach in systems biology and medicine and continue to offer great potential.
We present methods for the analysis of a single model, comprising applications
of standard dynamical systems approaches such as nondimensionalization, steady
state, asymptotic and sensitivity analysis, and more recent statistical and
algebraic approaches to compare models with data. We present parameter
estimation and model comparison techniques, focusing on Bayesian analysis and
coplanarity via algebraic geometry. Our intention is that this (non exhaustive)
review may serve as a useful starting point for the analysis of models in
systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte
Global organization of metabolic fluxes in the bacterium, Escherichia coli
Cellular metabolism, the integrated interconversion of thousands of metabolic
substrates through enzyme-catalyzed biochemical reactions, is the most
investigated complex intercellular web of molecular interactions. While the
topological organization of individual reactions into metabolic networks is
increasingly well understood, the principles governing their global functional
utilization under different growth conditions pose many open questions. We
implement a flux balance analysis of the E. coli MG1655 metabolism, finding
that the network utilization is highly uneven: while most metabolic reactions
have small fluxes, the metabolism's activity is dominated by several reactions
with very high fluxes. E. coli responds to changes in growth conditions by
reorganizing the rates of selected fluxes predominantly within this high flux
backbone. The identified behavior likely represents a universal feature of
metabolic activity in all cells, with potential implications to metabolic
engineering.Comment: 15 pages 4 figure
Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems
A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud
\u
Assessment of a numerical model to reproduce event-scale erosion and deposition distributions in a braided river
Becky Goodsell and Eric Scott are thanked for field assistance. Antony Smith assisted with figure
production. The field campaign wa funded by NERC Grant NE/G005427/1 and NERC Geophysical Equipment Facility Loan 892. Richard Williams was funded by NERC Grant NE/G005427/1during fieldwork and by a British Hydrological Society Travel Grant whilst visiting NIW
Glutamate mediated metabolic neutralization mitigates propionate toxicity in intracellular Mycobacterium tuberculosis
Metabolic networks in biological systems are interconnected, such that malfunctioning parts can be corrected by other parts within the network, a process termed adaptive metabolism. Unlike Bacillus Calmette-Guérin (BCG), Mycobacterium tuberculosis (Mtb) better manages its intracellular lifestyle by executing adaptive metabolism. Here, we used metabolomics and identified glutamate synthase (GltB/D) that converts glutamine to glutamate (Q → E) as a metabolic effort used to neutralize cytoplasmic pH that is acidified while consuming host propionate carbon through the methylcitrate cycle (MCC). Methylisocitrate lyase, the last step of the MCC, is intrinsically downregulated in BCG, leading to obstruction of carbon flux toward central carbon metabolism, accumulation of MCC intermediates, and interference with GltB/D mediated neutralizing activity against propionate toxicity. Indeed, vitamin B12 mediated bypass MCC and additional supplement of glutamate led to selectively correct the phenotypic attenuation in BCG and restore the adaptive capacity of BCG to the similar level of Mtb phenotype. Collectively, a defective crosstalk between MCC and Q → E contributes to attenuation of intracellular BCG. Furthermore, GltB/D inhibition enhances the level of propionate toxicity in Mtb. Thus, these findings revealed a new adaptive metabolism and propose GltB/D as a synergistic target to improve the antimicrobial outcomes of MCC inhibition in Mtb
Identification of metabolic engineering targets through analysis of optimal and sub-optimal routes
Identification of optimal genetic manipulation strategies for redirecting substrate uptake towards a desired product is a challenging task owing to the complexity of metabolic networks, esp. in terms of large number of routes leading to the desired product. Algorithms that can exploit the whole range of optimal and suboptimal routes for product formation while respecting the biological objective of the cell are therefore much needed. Towards addressing this need, we here introduce the notion of structural flux, which is derived from the enumeration of all pathways in the metabolic network in question and accounts for the contribution towards a given biological objective function. We show that the theoretically estimated structural fluxes are good predictors of experimentally measured intra-cellular fluxes in two model organisms, namely, Escherichia coli and Saccharomyces cerevisiae. For a small number of fluxes for which the predictions were poor, the corresponding enzyme-coding transcripts were also found to be distinctly regulated, showing the ability of structural fluxes in capturing the underlying regulatory principles. Exploiting the observed correspondence between in vivo fluxes and structural fluxes, we propose an in silico metabolic engineering approach, iStruF, which enables the identification of gene deletion strategies that couple the cellular biological objective with the product flux while considering optimal as well as sub-optimal routes and their efficiency.This work was supported by the Portuguese Science Foundation [grant numbers MIT-Pt/BS-BB/0082/2008, SFRH/BPD/44180/2008 to ZS] (http://www.fct.pt/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
- …
