113 research outputs found

    Random Vibrations of Nonlinear Continua Endowed with Fractional Derivative Elements

    Get PDF
    In this paper, two techniques are proposed for determining the large displacement statistics of random exciting continua endowed with fractional derivative elements: Boundary Element Method (BEM) based Monte Carlo simulation; and Statistical Linearization (SL). The techniques are applied to the problem of nonlinear beam and plate random response determination in the case of colored random external load. The BEM is implemented in conjunction with a Newmark scheme for estimating the system response in the time domain in conjunction with repeated simulations, while SL is used for estimating efficiently and directly, albeit iteratively, the response statistics

    Q-Method Extended Kalman Filter

    Get PDF
    A new algorithm is proposed that smoothly integrates non-linear estimation of the attitude quaternion using Davenport s q-method and estimation of non-attitude states through an extended Kalman filter. The new method is compared to a similar existing algorithm showing its similarities and differences. The validity of the proposed approach is confirmed through numerical simulations

    Analysis of multi degree of freedom systems with fractional derivative elements of rational order

    Get PDF
    In this paper a novel method based on complex eigenanalysis in the state variables domain is proposed to uncouple the set of rational order fractional differential equations governing the dynamics of multi-degree-of-freedom system. The traditional complex eigenanalysis is appropriately modified to be applicable to the coupled fractional differential equations. This is done by expanding the dimension of the problem and solving the system in the state variable domain. Examples of applications are given pertaining to multi-degree-of-freedom systems under both deterministic and stochastic loads

    Effective linear damping and stiffness coefficients of nonlinear systems for design spectrum based analysis

    Get PDF
    A stochastic approach for obtaining reliable estimates of the peak response of nonlinear systems to excitations specified via a design seismic spectrum is proposed. This is achieved in an efficient manner without resorting to numerical integration of the governing nonlinear equations of motion. First, a numerical scheme is utilized to derive a power spectrum which is compatible in a stochastic sense with a given design spectrum. This power spectrum is then treated as the excitation spectrum to determine effective damping and stiffness coefficients corresponding to an equivalent linear system (ELS) via a statistical linearization scheme. Further, the obtained coefficients are used in conjunction with the (linear) design spectrum to estimate the peak response of the original nonlinear systems. The cases of systems with piecewise linear stiffness nonlinearity, along with bilinear hysteretic systems are considered. The seismic severity is specified by the elastic design spectrum prescribed by the European aseismic code provisions (EC8). Monte Carlo simulations pertaining to an ensemble of nonstationary EC8 design spectrum compatible accelerograms are conducted to confirm that the average peak response of the nonlinear systems compare reasonably well with that of the ELS, within the known level of accuracy furnished by the statistical linearization method. In this manner, the proposed approach yields ELS which can replace the original nonlinear systems in carrying out computationally efficient analyses in the initial stages of the aseismic design of structures under severe seismic excitations specified in terms of a design spectrum

    Equation governing the probability density evolution of multi-dimensional linear fractional differential systems subject to Gaussian white noise

    Get PDF
    Stochastic fractional differential systems are important and useful in the mathematics, physics, and engineering fields. However, the determination of their probabilistic responses is difficult due to their non-Markovian property. The recently developed globally-evolving-based generalized density evolution equation (GE-GDEE), which is a unified partial differential equation (PDE) governing the transient probability density function (PDF) of a generic path-continuous process, including non-Markovian ones, provides a feasible tool to solve this problem. In the paper, the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established. In particular, it is proved that in the GE-GDEE corresponding to the state-quantities of interest, the intrinsic drift coefficient is a time-varying linear function, and can be analytically determined. In this sense, an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original high-dimensional linear fractional differential system can be constructed such that their transient PDFs are identical. Specifically, for a multi-dimensional linear fractional differential system, if only one or two quantities are of interest, GE-GDEE is only in one or two dimensions, and the surrogate system would be a one- or two-dimensional linear integer-order system. Several examples are studied to assess the merit of the proposed method. Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems, the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian, and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems

    Efficient Dynamic Analysis of a Nonlinear Wave Energy Harvester Model

    Get PDF
    In recent years, wave energy harvesting systems have received considerable attention as an alternative energy source. Within this class of systems, single-point harvesters are popular at least for preliminary studies and proof-of-concept analyses in particular locations. Unfortunately, the large displacements of a single-point wave energy harvester are described by a set of nonlinear equations. Further, the excitation is often characterized statistically and in terms of a relevant power spectral density (PSD) function. In the context of this complex problem, the development of efficient techniques for the calculation of reliable harvester response statistics is quite desirable, since traditional Monte Carlo techniques involve nontrivial computational cost. The paper proposes a statistical linearization technique for conducting expeditiously random vibration analyses of single-point harvesters. The technique is developed by relying on the determination of a surrogate linear system identified by minimizing the mean square error between the linear system and the nonlinear one. It is shown that the technique can be implemented via an iterative procedure, which allows calculating statistics, PSDs, and probability density functions (PDFs) of the response components. The reliability of the statistical linearization solution is assessed vis-a-vis data from relevant Monte Carlo simulations. This novel approach can be a basis for constructing computationally expeditious assessments of various design alternatives
    corecore