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1. Introduction 

Fractional operators have received recently considerable attention in a number of thematic domains [1]. In this 
regard, a notable example pertains to viscoelasticity as discussed in the works, for instance, of Nutting [2], Gemant 
[3], Scott-Blair and Gaffyn [4], and Bagley and Torvik [5]. The impact of fractional operators in problems involving 
the vibration of systems endowed with fractional derivative elements was described in two extensive review articles 
by Rossikhin and Shitikova [6, 7] in a deterministic setting, while analyses focusing on systems exposed to random 
loads are more recent. In this context, Spanos and Zeldin [8] elucidated certain pitfalls associated with the use of 
frequency dependent parameters in conjunction with the calculation of system response statistics. Linear systems 
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were investigated by Agrawal [9], and Di Paola, Failla, et al. [10], while nonlinear systems were investigated by 
techniques such as SL, stochastic averaging, Weiner path integrals and harmonic wavelet based SL [11-15]. 
The vibration problem of continuous systems has received some attention, as well. In this context, most articles deal 
with the analysis of either linear or nonlinear beams [16-19], and of plates [20-22]. Despite these efforts, the need of 
techniques for estimating the nonlinear response of continuous systems endowed with fractional derivative elements 
reliably and efficiently persists. Thus, this paper describes a solution technique based on the SL technique that 
allows estimating efficiently the response statistics of continuous systems and, further, a strictly numerical approach 
based on the BEM, for conducting Monte Carlo studies. The techniques are applied to the specific problems of large 
beam and plate displacements. 

2. Governing equations 

2.1. Preliminary concepts on fractional derivatives 

A critical concept underlining the definition of fractional derivative relates to the definition of fractional integral, 
which is obtained as the convolution of a function w(t) with a power law kernel. That is, 
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with Γ(α) being the gamma function [23]. Clearly, for integer values of the power law, α = n, the gamma function 
renders the factorial of the integer number and, thus eq. (1) provides the classical n-fold integral. The Riemann-
Liouville (RL) fractional derivative is constructed by differentiating eq. (1) m times. That is, 
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Further, the Grünwald-Letnikov (GL) representation [24] is given by the equation 
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Such a representation can lead to algorithms for the numerical computation of fractional derivatives. Indeed, the 
series in eq. (3) can be expanded and the series representation of the GL derivative 
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can be derived, where GLk are calculated recursively using the relationship 
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Eq. (4) provides the G1-algorithm that is used in this paper for conducting requisite numerical integrations. Such 
an algorithm clearly points out the fading memory property of the fractional derivative. 
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were investigated by Agrawal [9], and Di Paola, Failla, et al. [10], while nonlinear systems were investigated by 
techniques such as SL, stochastic averaging, Weiner path integrals and harmonic wavelet based SL [11-15]. 
The vibration problem of continuous systems has received some attention, as well. In this context, most articles deal 
with the analysis of either linear or nonlinear beams [16-19], and of plates [20-22]. Despite these efforts, the need of 
techniques for estimating the nonlinear response of continuous systems endowed with fractional derivative elements 
reliably and efficiently persists. Thus, this paper describes a solution technique based on the SL technique that 
allows estimating efficiently the response statistics of continuous systems and, further, a strictly numerical approach 
based on the BEM, for conducting Monte Carlo studies. The techniques are applied to the specific problems of large 
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2.2. Equations governing the large vibration of a continuous system 

Continuous systems are described via partial differential equations of the form 

qvD ][ ,  (6) 

where v is the unknown system response, D[∙] is a nonlinear differential operator, and q is the load. Developing an 
exact solution to problem (6) is a daunting task. Thus, two approximate techniques are proposed herein: Boundary 
Element Method (BEM) based Monte Carlo simulations; and Statistical Linearization (SL). These techniques can be 
utilized for estimating the system response when the nonlinear operator D[∙] includes a fractional derivative element. 

The BEM is implemented in conjunction with the nonlinear problem (6) by resorting to a surrogate linear 
problem accommodating the numerical implementation of the BEM as commonly proposed in the literature. 
Specifically, an appropriate linear partial differential equation of the form 

bvL ][ ,  (7) 

where L[∙] is a linear operator and b is a fictitious time-dependent term, is selected. Such a problem admits an 
integral representation of the solution, which is conveniently discretized to determine the system response as 

bG v ,  (8) 

with G being a known matrix, and b being an unknown (time-dependent) vector. Finally, the unknown source term 
b is calculated by collocating eq. (6) in each element of the continuum, so that the equation 

qbB ][ .  (9) 

is obtained. Eq. (9) is a system of nonlinear ordinary differential equations including the fractional derivative 
operator that can be solved in the time domain via a numerical integration scheme. Thus, the source term b is 
calculated by integrating eq. (9) in the time domain and the system response is readily computed via eq. (8) at each 
time step. Next, this procedure is repeated a large number of times to derive Monte Carlo results for the continuum 
response statistics. 

SL involves the replacement of a nonlinear differential equation by an equivalent linear system in which the 
system parameters are determined by minimizing a mean square error between the nonlinear equation and the linear 
one. Its application in conjunction with continua is based on a prior representation of the system response via 
Galerkin expansion. Such an expansion is used for deriving the system of nonlinear ordinary differential equations 

QwDnl ][ ,  (10) 

which is successively replaced by the equivalent linear system, 

QwDeq ][ ,  (11) 

whose parameters are determined by minimizing the mean square error 

}])[][{( 2wDwDE eqnl  .  (12) 

These preceding procedures which here have been outlined succinctly, will be elucidated in the next sections, by 
considering specific problems pertaining to nonlinear random vibrations of a beam and of a plate. 
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3. Nonlinear vibration of a beam 

The equation governing the large deflection v(x,t) of a vibrating beam of length L is 
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where the symbols E, I, ρ, and A denote elastic modulus, moment of inertia of the cross-section, mass density, and 
cross-sectional area, respectively. Further, c and α are parameters of a fractional derivative element; q(x,t) is a 
stochastic load, and N is the axial force given by the equation 
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The load is assumed of the separable form q(x,t) = p(x)f(t), where p(x) is a deterministic function, and f(t) is a 
random Gaussian process of given power spectral density function S(ω). 

3.1. BEM solution 

The BEM solution is sought by utilizing the equations 
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In this context, the response representation is 
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where G = |x-ξ|(x-ξ)2/12 and the constants ci (i=0,…,3) are dependent on the specific boundary conditions. 
By discretizing the beam into N elements, assuming that the source term b(ξ,t) is constant over each element, and 

collocating eq. (13) in each nodal point, the set of equations 
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is obtained, where b(t) is a vector containing the nodal values of the fictitious load, G is a known matrix arising from 
the integration of G(x,ξ) on the elements, F(b(t),G) is a nonlinear vector function and q(t) is a vector containing the 
load time histories. 

Eq. (17) is integrated numerically. For this purpose, the fractional derivative element is approximated by the 
representation (4). In this sense, the known past values of b(t) are used for estimating an effecting excitation 
accounting for the influence of the past terms. This approach allows deriving the incremental equation of motion 
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which is implemented by a classical Newmark scheme. From a computational perspective, it is worth - mentioning 
that a truncation can be introduced by neglecting the small contributions provided by past terms associated with k 
larger than a certain threshold. 

3.2. Statistical linearization solution 

The vertical displacement of the beam is represented by the equation, 
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where Φm(x) are the orthogonal linear modes of beam vibration, and wm(t) are time-dependent functions. 
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and by algebraic manipulations reflecting error projection on the space of the beam modes, a nonlinear 
ordinary differential equation describing the time variation of wm(t) is derived. Specifically: 

)(
2 2

2
0 tf

AL
PRKwww

L
EwwD

A
cw m

n i j
mnijjinmmmtm 




   , for m = 1,2,…, (21) 

where ωm is the natural frequency of vibration and 

 
L

mm dxxxpP
0

)()( .  (22) 

Next, an approximate solution of eq. (21) is sought by replacing it by the system, 

)(2
,0 tf

AL
PwwD

A
cw m

mmeqmtm 



  , for m = 1,2,…, (23) 

in which ωeq,m is an optimal equivalent stiffness. In this context, the procedure for determining the 
equivalent linear stiffness leads to the equation 
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The numerical calculation of the equivalent stiffness is pursued iteratively by assuming at the first 
iteration that ωeq,m=ωm in the right hand side of eq. (24). Then, the second-order statistics of the response 
is estimated via the equivalent linear system: 
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4. Nonlinear vibration of a plate 

Consider, the transverse displacement u=u(x,y,t) of a rectangular plate of sides a and b, with mass density ρ, 
thickness h, Young modulus E, and flexural stiffness D which is subject to a transverse load q=q(x,y,t) dependent on 
the space coordinates (x,y) and on the time variable t and is endowed with a fractional derivative element of order α 
and constant damping c. The associated equation of motion is 
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with )/2//( 22444444 yxyx   being the biharmonic operator, and ϕ = ϕ(x,y,t) being the Airy stress 
function that is governed by the equation 
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The load is assumed of a separable type, so that q(x,y,t) = p(x,y)f(t), where p(x,y) is a deterministic function and 
f(t) is a random process of a given power spectral density function S(ω). 

4.1. BEM solution 

In this context, the BEM based numerical approach considers the two linear equations 
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where b1(x,y,t) and b2(x,y,t) are space-time dependent fictitious loads. 
The solution of the problems (30) has the integral representation [25] 
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where ε = 2π or π if the point P is inside the domain A or on the boundary Γ respectively, and the other quantities are 
given in Ref. [25]. 
Further, the equation 
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holds. Eq. (31) and (32) are used for estimating the unknown boundary quantities by introducing the associated 
boundary conditions. For this purpose, the plate domain and boundary are discretized and eq. (31) and (32) are 
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The load is assumed of a separable type, so that q(x,y,t) = p(x,y)f(t), where p(x,y) is a deterministic function and 
f(t) is a random process of a given power spectral density function S(ω). 
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collocated on boundary points. By doing so, the linear system of equations 
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is derived. The sub-matrices composing the first two rows are determined by the boundary conditions. System (33) 
allows determining the boundary quantities in terms of the fictitious load b1. Thus, the response of the plate is 
calculated by the equation 

11bGu  ,  (34) 

where G1 is a known matrix, b1 is a vector containing the values of the fictitious load at each point of the domain 
and u is a vector containing the response at that points. A similar procedure can be used for representing the stress 
function: 

22bG ,  (35) 

where it is observed that the only difference with the determination of u relates to the different boundary conditions. 
The representation obtained in this manner is used for collocating the displacements and stress values into the 
original equations (28) - (29) in order to derive a set of fractional nonlinear ordinary differential equations for the 
fictitious loads b1 and b2. That is, 

qGGGGGGFbDbDGcbGh
xyxyyyyyxxxxt  ),,,,,(

,2,1,2,1,2,11110111
  , and ),,(

,1,1,122 xyyyxx
GGGEFb  , (36) 

where F1 and F2 are nonlinear functions encapsulating the nonlinear elements of the original system. 
The numerical solution of this fractional differential equation is obtained by a Newmark based algorithm by 

utilizing the same approach described for the beam vibration problem. The resulting incremental equation of motion 
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4.2. Statistical linearization solution 

The response of the system is represented by Galerkin expansions of the vertical displacement and of 
the stress function having time-dependent coefficients. Specifically, 
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with Px and Py being the total tension loads applied on the sides x = 0, a and y = 0, b of the plate, 
respectively, the eigen-functions Umn and φmn depend upon the specific boundary conditions, and are 
orthogonal to each another. Further, the quantities 
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are introduced. By substituting eq. (38) into eq. (28) and (29), doing algebraic manipulations reflecting 
error projection in the space of eigen-functions, and observing that the stress function amplitudes w(2)

mn 
can be expressed in terms of wmn, a nonlinear fractional ordinary differential equation for the time-
dependent amplitudes wmn is found. Specifically, 
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and ωMN denotes the natural frequency of the linear plate. An approximate solution of eq. (40) is sought 
by replacing this nonlinear system by the equivalent linear system 
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mn 
can be expressed in terms of wmn, a nonlinear fractional ordinary differential equation for the time-
dependent amplitudes wmn is found. Specifically, 
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and ωMN denotes the natural frequency of the linear plate. An approximate solution of eq. (40) is sought 
by replacing this nonlinear system by the equivalent linear system 
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In this context, the equivalent stiffness is determined using the equation 
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and HMN(ω) is the system transfer function 
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Next, the standard deviation of the transverse displacement can be determined by the equation 
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5. Concluding remarks 

The random response of nonlinear continua endowed with fractional elements has been determined 
approximately by Boundary Element Method (BEM) based Monte Carlo simulations, and by Statistical 
Linearization (SL). The techniques have been described in conjunction with two structural dynamic problems: a 
nonlinear beam vibration and a nonlinear plate vibration. Figure 1 and 2 show typical representations of the response 
statistics obtained for a simply supported and for a rectangular plate. It is seen that SL is not only an efficient but 
also a reliable technique for calculating the response statistics. 
 

 

Fig. 1. Standard deviation of the vertical displacement of a simply supported beam for various fractional derivative orders. Continuous lines: SL; 
dotted lines: BEM. 

 

Fig. 2. Standard deviation of the vertical displacement of a rectangular plate along the section y = b/2 for various fractional derivative orders. 
Continuous lines: SL; dotted lines: BEM. 
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and HMN(ω) is the system transfer function 
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Next, the standard deviation of the transverse displacement can be determined by the equation 
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5. Concluding remarks 

The random response of nonlinear continua endowed with fractional elements has been determined 
approximately by Boundary Element Method (BEM) based Monte Carlo simulations, and by Statistical 
Linearization (SL). The techniques have been described in conjunction with two structural dynamic problems: a 
nonlinear beam vibration and a nonlinear plate vibration. Figure 1 and 2 show typical representations of the response 
statistics obtained for a simply supported and for a rectangular plate. It is seen that SL is not only an efficient but 
also a reliable technique for calculating the response statistics. 
 

 

Fig. 1. Standard deviation of the vertical displacement of a simply supported beam for various fractional derivative orders. Continuous lines: SL; 
dotted lines: BEM. 

 

Fig. 2. Standard deviation of the vertical displacement of a rectangular plate along the section y = b/2 for various fractional derivative orders. 
Continuous lines: SL; dotted lines: BEM. 
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